User's Guide

Rev.B 1.0 Applicable to the main program Rev.A 1.0 and above.

Insulation Resistance Meter

- Freely set the test voltage (1~1000V)
- Insulation resistance test range: 100 K Ω 10 T Ω
- Double display of insulation resistance and leakage current
- Rapid discharge of residual voltage
- Contact inspection function (to prevent misjudgment of contact failure)
- Short circuit protection
- Clear zero function
- Quick test: 55 times/sec
- Support u disk data recording
- Support SCPI and ModBus communication protocols.

是常州安柏精密仪器有限公司的商标或注册商标。

@Instruments

Applent Instruments Ltd

#14,No. 9 Caoxi Road, Wujin district, Changzhou, Jiangsu province, China [213161] Tel: 0519-88805550 Fax: 0519-86922220

http://www.applent.com

Sales Email: <u>sales@applent.com</u> Tech Email: <u>tech@applent.com</u>

©2005-2018 Applent Instruments Ltd.

Safety Summary

WARNING DANGER: When you notice any of the following abnormal conditions, terminate operation immediately and disconnect the power cord. Contact Applent Instruments Sales for repair. Failure to do so may result in fire or potential electrical shock to operators.

- Instrument is operating abnormally.
- Instrument produces abnormal noise, odor, smoke or flash during operation.
- Instrument generates high temperature or electric shock during operation.
- Power cord, power switch, or power outlet is damaged.
- Impurities or liquids flow into the instrument.

Safety Information

WARNING DANGER: To avoid possible electric shock and personal safety, follow guidelines in below.

Users should read the following safety information carefully before starting to use the Disclaimer instrument. Applent Instruments will not be held liable for any personal safety and property damage caused by user's failure to comply with the following terms. Ground To avoid electric shock hazard, the instrument chassis and cabinet must be connected to a safety earth ground by the supplied power cable with earth blade. The instrument Do not use the instrument in a flammable or explosive atmosphere, steam or dusty DO NOT environment. The use of any electronic device in such an environment is an adventure for Operate in an Explosive Atmosphere personal safety. Non-professional maintenance personnel should not open the instrument case in an attempt DO NOT to repair the instrument. The instrument still has charge after a period of shutdown, which Open instrument enclosure may pose a shock hazard to users. DO NOT If the instrument has been damaged, its danger will be unpredictable. Please disconnect Use a damaged instrument power cord and don't use the instrument; do not attempt to repair it. DO NOT If the instrument is not working properly, its danger is unpredictable. Please disconnect Use an instrument that works power cord and don't use the instrument; do not attempt to repair it. abnormally **DO NOT** Use the instrument beyond If out of scope, the protection provided by the instrument will be invalid. instructions specified in this manual

CERTIFICATION, LIMITED WARRANTY, & LIMITATION OF LIABILITY

Applent Instruments, Inc. (shortened form **Applent**) certifies that this product met its published specifications at the time of shipment from the factory. Applent further certifies that its calibration measurements are traceable to the People's Republic of China National Institute of Standards and Technology, to the extent allowed by the Institution's calibration facility or by the calibration facilities of other International Standards Organization members. This guarantee does not cover fuse and damage caused by negligence, misuse, pollution, accident or abnormal use. This guarantee only applies to the original purchaser and is non-transferable.

This Applent instrument product is warranted against defects in material and workmanship for a period corresponding to the individual warranty periods of its component products. **The warranty period is 2 year and begins on the date of shipment.** During the warranty period, Applent will, at its option, either repair or replace products that prove to be defective. This warranty extends only to the original buyer or end-user customer of a Applent authorized reseller, and does not apply to fuses, disposable batteries or to any product which, in Applent's opinion, has been misused, altered, neglected or damaged by accident or abnormal conditions of operation or handling.

For warranty service or repair, this product must be returned to a service facility designated by Applent. The buyer shall prepay shipping charges to Applent and Applent shall pay shipping charges to return the product to the Buyer. However, the Buyer shall pay all shipping charges, duties, and taxes for products returned to Applent from another country.

Applent warrants that its software and firmware designated by Applent will execute its programming instruction when properly installed on that instrument. Applent does not warrant that the operation of the instrument, or software, or firmware, will be uninterrupted or error free.

The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by the Buyer, Buyer-supplied software or interfacing, unauthorized modification or misuse, operation outside the environmental specifications for the product, or improper site preparation or maintenance.

THIS WARRANTY IS BUYER'S SOLE AND EXCLUSIVE REMEDY AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. APPLENT SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES OR LOSSES, INCLUDING LOSS OF DATA, WHETHER ARISING FROM BREACH OF WARRANTY OR BASED ON CONTRACT, TORT, RELIANCE OR ANY OTHER THEORY.

Applent Instruments, Ltd. Changzhou, Jiangsu, China, Rev.A3 October, 2009 Rev.a3

Contents

Safety Summary	2
Safety Information	2
CERTIFICATION, LIMITED WARRANTY, & LIMITATION OF LIABILITY	3
Contents	4
Figure Contents	7
Table Contents	8
1. Installation and Setup Wizard	9
1.1 Packing List	9
1.2 Power Requirements	9
1.3 Operating Environment	9
1.4 Cleaning	9
1.5 Replace Fuse	10
1.6 How to Remove the Handle	10
2. Overview	12
2.1 Introduction	12
2.2 Main Specifications	12
2.3 Main Functions	13
3. Startup	14
3.1 Front Panel	14
3.1.1 Front Panel Description	14
3.1.2 Rear Panel	14
3.2 Power On	15
3.2.1 Power On	15
3.2.2 Warm-up Time	15
3.3 Preparing for Testing	15
3.3.1 Connect to Device under Test (DUT)	15
3.3.2 Connecting a DUT with Polarity	16
3.3.3 Connecting the device under test without polarity and without shielding	16
4. [Meas] Page	18
4.1 <meas display=""> Page</meas>	18
4.1.1 Voltage	18
4.1.2 Test Speed	19
4.1.3 Range	19
4.1.4 Charging	20
4.1.5 Timer	20
4.1.6 Open Circuit Clear Zero	20
5. [Setup] Page	21
5.1 <meas setup=""> Page</meas>	21
5.1.1 Contact Inspection	21
5.1.2 Ingger	22
5.1.3 Ingger Edge	22
5.1.4 Delay	22
5.1.5 Comparator	22
5.1.6 Beep	23
5.1.7 [Upper Limit] and [Lower Limit]	23
5.1.8 Automatic discharge	23
5.2 Start testing	23
5.2.1 Charge – Test - Discharge	23
6. System Configuration	25
6.1 <system config=""> Page</system>	25
6.1.1 Change System Language 【LANGUAGE】	25
6.1.2 Setting the system date and time	26
6.1.3 Account Setting	26
6.1.4 [Baud Rate] Setting	26
6.1.5 Command Handshake	27
6.1.6 RS485 [StationNo.] selection	27
6.1.7 Instruction handshake (only for SCPI protocol)	28
6.1.8 Result Sending (only for SCPI protocol)	28
6.2 < System Information> page	28
7. U disk storage	30
7.1 Create a [new file]	30
7.2 Save regularly	30
7.3 [File] selection	30
7.4 U disk data storage mechanism	31

8. PLC (Handler) Interface	32
8.1 Pin Terminal and signals	
8.2 Connection Method	
8.5 Thining Chart.	
9. Remote Control	
9.1 RS-232C	
9.1.1 RS232C Connection	
9.2 Handshake Protocol	
10. SCPI Command Reference	
10.1 Terminator	
10.1.1 Terminator Rules	37
10.1.2 Notation Conventions and Definitions	
10.1.5 Command Structure	
10.2 Commands and Faranceers	
10.2.2 Parameter	
10.2.3 Separator	
10.3 Command Reference	
10.4 Display Subsystem	
10.4.1 DISPlay:PAGE	
10.5 Function Subsystem	
10.5.1 FUNCtion: VOLTage	40
10.5.2 FUNCtion: APERture	
10.5.3 FUNCtion: TIMEr	
10.5.4 FUNCtion: Count	
10.5.5 FUNCtion: Check	
10.5.7 FUNCtion: RANGe:Mode	
10.6 TRIGger Subsystem	42
10.6.1 TRIGger: IMMediate	42
10.6.2 TRIGger: SOURce	
10.6.3 TRIGger: Edge	
10.7 COMParator Sorting Subsystem	
10.7.2 COMParator:LIMit	
10.7.3 COMParator:Beep	
10.8 SYSTem Subsystem	43
10.8.1 SYSTem:LANGuage	
10.8.2 SYSTem:SHAKhand Communication Handshake Command	
10.8.5 STSTEIN.SENDINGE GET Mode Command	
10.10 STATe Subsystem	
10.10.1 STATe?	44
10.10.2 STATe: DISCharge	45
10.10.3 STATe: CHARage	45
10.11 CORRection Subsystem	45
10.12 IDN? Subsystem	
11. Modbus (RIU) protocol	
11.1 Data format	
11.1.2 CRC-16 Calculation method	
11.1.3 Response frame	48
11.1.4 No response.	49
11.1.5 Error code	
11.2 Function code	49
11.5 Register	
11.5 Write to multiple registers	
11.6 Echo test	51
12. Modbus (RTU) instruction set	52
12.1 Register overview	
12.2 Obtain measurement data	
12.2.1 Obtaining Comparator Results.	

12.3 Parameter setting	54
12.3.1 Output voltage 【3000】	54
12.3.2 Resistance range register [3006]	54
12.3.3 Resistor range mode register [3008]	55
12.3.4 Trigger once [5400]	
13. Specification	56
13.1 Technical Indicators	
13.2 General Specification	56
13.3 Environment Requirements	57
13.4 Dimensions	57

Figure Contents

Figure 1-1	Fuse holder on the rear panel	
Figure 1-2	Instrument handle (schematic, panel graphics do not match the actual)	
Figure 3-1	Front panel	14
Figure 3-2	Rear Panel	
Figure 3-3	Measurement of the device under test with a shield terminal	
Figure 3-4	Measurement of the device under test with positive and negative electrodes	
Figure 3-5	Non positive and negative & shield terminal measurement	
Figure 4-1	<pre><meas display=""> Page</meas></pre>	
Figure 5-1	<meas setup=""> Page</meas>	
Figure 5-2	State switching	
Figure 6-1	<system config=""> Page</system>	
Figure 7-1	< USB flash drive storage > page	
Figure 8-1	Pin Terminal	
Figure 8-2	Input terminal schematic	
Figure 8-3	Output terminal schematic	
Figure 8-4	Timing Chart	
Figure 9-1	RS-232 interface on the rear panel	
Figure 10-1	Command Tree Structure	
Figure 10-2	DISPlay Subsystem tree	
Figure 10-3	Function Subsystem tree	
Figure 10-4	TRIGger Subsystem tree	
Figure 10-5	COMParator sorting Subsystem tree	
Figure 10-6	SYSTem Subsystem tree	
Figure 10-7	FETCh? Subsystem tree	
Figure 10-8	STATe Subsystem tree	
Figure 10-9	CORRection Subsystem tree	
Figure 10-10	IDN? Subsystem tree	46
Figure 11-1	Modbus instruction frame	
Figure 11-2	Modbus Additional CRC-16 value	
Figure 11-3	Normal response frame	
Figure 11-4	Abnormal response frame	
Figure 11-5	Read out multiple registers (0x03)	
Figure 11-6	Read out the response frame of multiple registers (0x03)	
Figure 11-7	Write to multiple registers (0x10)	
Figure 11-8	Write to multiple registers (0x03) response frame	51
Figure 11-9	Echo test (0x08)	

Table Contents

Instruments accessories	9
Front Panel Description	
Rear Panel Description	
Test range description	
Description of Handler Interface Output Signals	
Description of Handler Interface Input Signals	
Description of Handler Interface Power Rating Signals	
Timing description	
Commonly used RS-232 signals	35
The minimum subset of the RS-232 standard	35
Multiplier Mnemonics	
Instruction frame description	47
Exception frame description	
Description error code	49
Function code	49
Read out multiple registers	50
Write to multiple registers	
Register overview	
	Instruments accessories

1. Installation and Setup Wizard

Thank you for purchasing our products. Please read this chapter carefully before use. In this chapter you will learn the following:

- Packing List
- Power Requirements
- Operating Environment
- Cleaning
- Replace fuse
- How to Remove the Handle

1.1 **Packing List**

Before using the instrument, please:

- 1. Check appearance of the product whether there is damage, scratches, etc.;
- 2. Check the instrument packing list if there are any missing items.

Table 1-1 Instruments accessories

Name	Qty
AT688 User's guide	1
AC power cord	1
250V/1A slow-blow fuse	1
ATL507 test cable	1
ATL108 communication cable	1
1A Fuse (Slow-Blow)	1
Test report	1

If there is any damage or insufficient accessories, please contact Applent Instruments Sales or distributor immediately.

1.2 **Power Requirements**

AT688 can only be used in the following power conditions: Voltage: 198 ~ 252 VAC/110V Frequency: 47.5~52.5Hz Power: up to 30VA

Warning: To prevent electric shock, please connect the power ground.

If users replace power cord, make sure that the ground of the power cord is securely connected.

Operating Environment 1.3

AT688 must be used under the following environmental conditions: Temperature: 0°C~55°C Humidity: < 70% RH at 23°C

1.4 Cleaning

To prevent electrical shock, disconnect the AT688 power cable from the receptacle before cleaning.

 \triangle

WARNING: Don' t Use Organic Solvents (such as alcohol or gasoline) to clean the instrument.

1.5 Replace Fuse

Figure 1-1 Fuse holder on the rear panel

Use a dry cloth or a cloth slightly dipped in water to clean the casing.

Do not attempt to clean the AT688 internally.

To prevent electric shock, be sure to turn off the power switch and unplug the AC power cord before checking or replacing the fuse.

Make sure the fuse used is identical to the equipment instructions, including shape, grade, characteristics, etc. If different types of fuses are used or short circuit, then the device may be damaged.

Note: Please use a 250V, 1A slow blow fuse.

1.6 How to Remove the Handle

Instrument handle can be adjusted. Hold both sides of the handle with both hands, gently pull it to the sides, then rotate the handle. The handle can be adjusted to four positions as shown below:

Figure 1-2 Instrument handle (schematic, panel graphics do not match the actual)

Handheld position

Visible position 1 [Hands hold both sides of the handle at the same time, gently pull it to the sides until it can rotate freely, then switch to the visible position 2]

Visible position 2 [hold both sides of the handle at the same time, gently pull it to the sides until it can rotate freely, then switch to the handheld position]

Remove handle position. (Pull to both sides until the handle is removed.)

2. Overview

This chapter contains general information about AT688. The information is organized as follows

- Introduction
 - Main Specifications
- Main Functions

2.1 Introduction

Thank you for purchasing the AT688 Insulation Resistance Meter.

The AT688 is an insulation resistance meter controlled by a high performance ARM processor. Unique insulation resistance and leakage current test and

Display, six-range test, the insulation resistance measurement range can reach $100k \Omega \sim 10T \Omega$, and the maximum display digit is 9999. With a test speed of up to 55 times per second, ultra-high speed testing provides the best solution for automated production.

The instrument has a sorting function, sorting the sound setting, and optional Handler interface, which is applied to the automatic sorting system to complete the automatic

Pipeline testing. It can be equipped with an RS232C interface for remote control and data acquisition and analysis.

The computer remote control command is compatible with SCPI (Standard Command for Programmable Instrument), which can efficiently perform remote control and data acquisition functions.

The AT688 measures the insulation resistance of various electronic components, devices, dielectric materials, and wire and cable.

2.2 Main Specifications

AT688 technical specification contains the basic technical specifications of the instrument and the range allowed by the instrument test. These specifications are all achievable when the instrument is shipped from the factory.

Reference:

 \odot

Full AT688 specifications are included in Appendix A.

Freely set the test voltage:

Output negative voltage: 1.0VDC~1000VDC, basic accuracy: 1% Voltage step 0.1V, display 4 digits

- Insulation resistance range accuracy:
 <1M: 5% ≥1M: 1% ≥1G: 3% ≥10G: 5% ≥1T: 10%
- Maximum charging current: $30mA \pm 5mA$
- Provide 3 speed options: Slow: 3 times/sec; Medium speed: 25 times/sec; Fast: 55 times / sec
- **Built-in timer, custom charging time:** Timing time: 0 ~ 999.98.
- Double display of insulation resistance and leakage current

• Multiple trigger modes:

Internal trigger, manual trigger, external trigger, and bus trigger.

2.3 Main Functions

• 3.5-inch color LCD display

Multiple parameters are displayed at the same time, which is straightforward

• Correction function:

Open circuit clear zero for each range

• Comparator (sorting) function:

PASS/UPPER/LOWER judgment can be made on the DUT. Comparator function display: Display directly on the LCD screen. Comparator output: The result can be sorted by the optional Handler interface and RS232C output. Alarm: Can set alarm switch.

• **Contact inspection function (to avoid misjudgment of contact failure)** When the inspection is turned on, if the contact is poor, OPEN is displayed on the LCD screen.

• Interface:

1. Built-in Handler interface: sorting result output, trigger signal input, EOC signal output.

2. Built-in RS232C interface: Use a three-wire simple serial interface. Compatible with SCPI command set, ASCII transmission, complete all instrument functions.

• Rapid discharge of residual voltage

3. Startup

In this chapter you will learn the following:

- Front panel including the introduction of buttons and test terminals.
- Rear panel describes the power and interface information.
- Power on—including power on self-test process, instrument defaults, and instrument warm-up time.
- Start testing including how to connect to the test side

3.1 Front Panel

3.1.1 Front Panel Description

Figure 3-1

Front panel

Table 3-1

Front Panel Description

No.	Description	
1	USB Disk Port (USB-Host)	
2	Manual trigger key	
3	Power switch. Touch button	
4	System soft keys, including test, discharge, keyboard locks, etc.	
5	Function softkey	
6	Main soft keys: Meas and Setup	
7	Input terminal. The input is used to connect the test cable for testing. (+) positive terminal (current sampling terminal) (-) Negative terminal (voltage output, high voltage danger!)	
	GND Ground (used to shield the device under test. If the device under test is a cable	
	or capacitor, this terminal is not connected.)	
	Warning: Do not connect the negative terminal to the ground terminal.	
8	Numeric keypad	
9	Cursor key	
10	3.5-inch LCD Display	

3.1.2

Figure 3-2

Rear Panel Rear Panel

Table 3-2

Rear Panel Description

No.	Description	
1	Power Cable Receptacle (Outlet)	
2	Fuse holder	
3	GND	
4	RS-232C interface	
5	HANDLER (PLC) interface	

3.2 Power On

3.2.1 Power On

The button labeled "D' at the bottom left of the panel is the power switch. AT688 uses soft start mode: Power on: Press the Power button. When the POWERLED light is on (green), release the Power button. Power off: Press the Power button. When the POWERLED light is on (orange), release the Power button.

3.2.2 Warm-up Time

In order to achieve the accuracy rating, warm up the instrument for at least 30 minutes.

3.3 Preparing for Testing

3.3.1 Connect to Device under Test (DUT)

For devices with shielded terminals, devices with shielded enclosures such as standard high-resistance boxes please test as follows:

Figure 3-3 Measurement of the device under test with a shield terminal

Note: If your device under test has a shielded enclosure, it cannot be connected to the positive and negative poles.

3.3.2 Connecting a DUT with Polarity

The device under test with polarity, such as capacitors, has positive and negative electrodes, it must be tested as follows, pay attention to the positive and negative electrodes.

Figure 3-4 Measurement of the device under test with positive and negative electrodes

3.3.3 Connecting the device under test without polarity and without shielding

Non-polar non-shielded devices and materials, such as wire and cable, please measure as follows, there are no special test requirements.

Figure 3-5 Non positive and negative & shield terminal measurement

1. Warning: There is high voltage at the negative terminal of the test. It is recommended to connect the device under test in the discharge state to prevent electric shock.

2. Warning: If there are polar devices (electrolytic capacitors, etc.), please connect them with positive and negative poles, otherwise it will pose a threat to personal safety. And after a few seconds of discharge, remove it to prevent clicks.

3. Recommendation: The device uses an internal discharge.

4. The instrument does not allow short-circuiting for a long time, otherwise it will damage the instrument.

5. In order to ensure the accuracy and stability of the measurement, please ensure that the temperature and humidity of the environment meet the requirements of the instrument.

4. [Meas] Page

This section includes the following information: • Related setting for MEAS DISPLAY page

4.1 <MEAS DISPLAY> Page

Under the discharge state (DSCH), press [Meas] key to enter the [Meas Display] page.

The <Meas Display> page is mainly used to display measurement results, test status, and sorting results. The shortcut function keys can perform the following functions:

- Measurement Setup Enter the Measurement Setup page
- System Setup Enter the System Setup page
- Open circuit clear zero used for instrument open clear zero operation
- Keyboard lock used to lock the keys on the keyboard

At the same time, five common functions can be set on this page, including:

- Voltage set the voltage at the output of the instrument
- • Speed test speed
- Range select test range
- Charging set the charging time
- Timekeeping set the charging timer timing mode

<MEAS DISPLAY> Page

4.1.1 Voltage

Figure 4-1

Used to set the voltage at the output of the instrument.

AT688 test voltage ranges from 1.0V to 1000VDC, 4 digits, and with voltage step of 0.1V.

Procedure for setting voltage:

Step 1 Press [Meas] to enter the Meas page or press [Setup] to enter Setup page;

- Step 2 Use cursor keys to select the [Voltage] field;
- Step 3 Output voltage setting operation method 1:

Use the function key to directly select the commonly used 5 voltages, which are 50V, 100V, 250V, 500V, 1000V;

Output voltage setting operation method 2:

Input the required voltage value directly through the numeric keypad;

4.1.2 Test Speed

Used to set test speed (sampling rate) of the instrument.

Completing a sample is generated from the test - analog to digital conversion - operation until the measurement result and the sort result are displayed. This period of time is called sampling

The sampling rate is the number of samples that can be completed per second.

Usually, when users manually test the device, use slow speed; if it is used for online testing of automation equipment such as PLC, please use medium speed or fast.

AT688 provides three rates for users to choose from, either in the discharge state or in the test state.

Procedure for setting test speed:

- Step 1 Press [Meas] to enter the Meas page or press [Setup] to enter Setup page;
- Step 2 Use cursor keys to select the [Speed] field;
- Step 3

Use soft keys to select		
Soft key	Function	
Slow	3 t/s	
Medium	25 t/s	
Fast	55 t/s	

4.1.3

Range

Reference:	Ŷ	" Please refer to the section "Insulation Resistance Measurement Range" of the technical specifications for
the range of res	istan	ce for different voltages and different ranges.

The correct range is related to the test accuracy, and the wrong range will make the measurement result unable to achieve the specified accuracy.

There are 3 ranges:

Table 4-1

Test range description

Mode	Function overview	Advantage	Disadvantage
Auto range	The instrument automatically selects the best test range based on impedance value. The range number in range field is automatically set.	Users do not need any participation	Auto range requires predictive range and test speed will be lower than the manual range mode, which is especially noticeable at low frequencies (below 1 kHz).
Hold range	Measurement is performed with a fixed impedance range	Test speed is the fastest.	Users need to participate in the range selection
Nominal Range	AT688 sets the optimum range depending on the nominal value.	The best way for sort test. Speed is the fastest.	Valid only in the sorting mode.

• Under auto range, some devices (such as CBB capacitors) will not be able to select the range correctly. This is normal phenomenon. Switching to the hold range test will avoid such situations.

- When measuring leakage current, it is recommended to use the hold range.
- The nominal range here is automatically selected according to the set lower limit. Only works when the comparator is turned on. When the comparator is off, the nominal range is auto range.

Procedure for setting range:

- Step 1
- Press [Meas] to enter the Meas page or press [Setup] to enter Setup page; Use cursor keys to select the [Range] field;

Step 2 Step 3

Warning

Use soft keys to select Auto, Hold, or Nominal		
Soft key	Function	
Auto range	The instrument will automatically select the range	
Hold range	The instrument is locked on the current range	
Nominal range	The instrument will select the best range based on the nominal value.	
Increase+	ncrease+ Increase the range number while the range is changed to locked	
Decrease-	Decrease- Decrease the range number while the range is changed to locked	

4.1.4 Charging

Used to set the charging time of the instrument. AT688 has a 999.9S built in charge timer.

Procedure for setting charging time:

- Step 1 Press [Meas] to enter the Meas page or press [Setup] to enter Setup page;
- Step 2 Use cursor keys to select the [Charge] field;
- **Step 3** Charging time setting operation method 1:

Use the function key to directly select to close or select the commonly used 4 times, respectively 10s, 30s, 60s, 120s;

Charging time setting operation method 2:

Enter the required charging time directly through the numeric keypad;

4.1.5 Timer

Used to set the timing of the charging time.

Procedure for setting charging timer:

- Step 1 Press [Meas] to enter the Meas page or press [Setup] to enter Setup page;
- **Step 2** Use cursor keys to select the [Timer] field;

Step 3 Use soft keys to select

Soft key	Function
Positive timing	Time is gradually increasing
Countdown	Time is gradually decreasing

4.1.6 Open Circuit Clear Zero

Used to perform an open circuit clear zero operation on the instrument. In order to achieve high precision measurements, zero calibration is essential.

Procedure for open-circuit clear zero:

- **Step 1** Press [Meas] to enter the Meas page or press [Setup] to enter Setup page;
- **Step 2** Use the sidebar function key to select the [Open Clear] field;
- Step 3 Use soft keys to select

Soft key	Function		
Enter	The instrument open circuit clear zero all ranges. If the clear zero is successful, the data will be saved in memory.		
Cancel	Abandon the zero and the instrument returns to the discharge state.		

5. [Setup] Page

In this chapter users will learn about all the setup features:

Under the discharge state (DSCH), press the [Setup] key to enter the [Meas Setup] page.

5.1 <MEAS SETUP> Page

- All measurement related settings are operated in the <Meas Setup> page.
- These settings include the following parameters:
- Voltage set the voltage at the output of the instrument
- Speed test speed
- Range select test range
- Charging set the charging time
- Timekeeping set the charging timer timing mode
- Contact inspection setting up the contact inspection of the instrument
- Trigger select the trigger mode of the instrument
- Trigger edge select the edge mode of the external trigger
- Delay only for external trigger delays
- Comparator Sorting status
- Upper limit comparator upper limit
- Lower limit comparator lower limit
- Beep beep working status
- Automatic discharge

The [Voltage], [Speed], [Range], [Charge] and [Timer] settings can also be set on the <Meas Display> page. For the setting of these parameters, please refer to the [Meas] measurement main page section.

Figure 5-1 </EAS SETUP> Page

IEAS SEI	IUF - rage				
<setup> VOLTAGE</setup>	100.0 V	CHARG	OFF		MEAS DISPLAY
RANGE	5LUW [6] AUTO [40	3.0 GΩ, 4	.2 1	/n [Ω]	SYSTEM
CHECK EDGE	ON RISING	TRIGGER	INT	6) à	
COMP	OFF OFF	UPPER	OFF Ø.Ø	1000 kΩ	
DSCHARG	MANUAL			2	OPEN
Use Softk	eys to Select				ZERO
				KEY LOCK	13:42

5.1.1 Contact Inspection

Used to set up the contact check of the instrument.

For capacitive materials such as capacitors and cables (greater than 100 PF), the contact check function can well interpret whether the device is in good contact, thus reducing the occurrence of erroneous testing, and the contact inspection does not increase any test time.

After the contact inspection function is turned on, if the instrument is in the test state and the presence of capacitive material is not checked, the instrument will display OPEN.

After the contact check function is turned off, the instrument will not judge the capacitive material and directly test the value.

Procedure for setting contact inspection:

Step 1 Press [Setup] to enter Setup page;

Step 2 Use cursor keys to select the [Contact Inspection] field;

Step 3 Use soft keys to select

Soft key	Function
OFF	Used to turn off the contact inspection of the instrument.
ON	Used to turn on the contact inspection of the instrument.

5.1.2 Trigger

The instrument provides 4 trigger modes:

Internal trigger, manual trigger, bus trigger and external trigger.

Trig Mode	Function
INT	Internal Trigger. All ten sweep points are swept continuous.
MAN	Manual Trigger. Each time the instrument is triggered by [Trig] key, the sweep points are
	swept one by one.
EXT	External Trigger. An edge pulse is received from the Handler interface of the rear panel (see
	the trigger edge setting for details), and the instrument performs a measurement cycle. Other
	time instruments are waiting. Please refer to the Handler interface.
BUS	BUS Trigger. After the instrument receives the RS232 trigger instruction, it will perform a
	measurement cycle, and wait for other times.

Procedure for setting trigger mode:

- Step 1 Press [Setup] to enter Setup page;
- Step 2 Use cursor keys to select the [Trigger] field;
- Step 3 Us

Use soft keys to select trigger mode			
Soft key	Function		
INT	Internal trigger		
MAN	Manual trigger		
EXT	External trigger		
BUS	Bus trigger (only valid if the comparator is turned on)		

5.1.3 Trigger Edge

The edge mode of the external trigger. (only valid under external trigger)

- Procedure for setting trigger edge:
- **Step 1** Press [Setup] to enter Setup page;
- Step 2 Use cursor keys to select the [Trigger] field and select [EXT] trigger
- Step 3 Use cursor keys to select the [Trigger Edge] field;

Soft key	Function		
Rising edge	External trigger edge selection is triggered by rising edge		
Falling edge	External trigger edge selection is triggered by falling edge		

5.1.4 Delay

In the trigger mode, after the trigger signal is captured, the high-voltage output is started after a certain time delay.

The instrument can set the delay time before each test by triggering the [delay] timer, and wait for the station to be ready before the test.

The maximum delay time is 60s and the minimum delay time is 1ms.

Procedure for setting [Delay] :

- **Step 1** Press [Setup] to enter Setup page;
- Step 2 Use cursor keys to select the [Average] field;
- Step 3 Use numeric keys to input delay time

5.1.5 Comparator

The instrument can compare the measured resistance values.

Procedures for setting comparator:

- Step 1 Press [Setup] to enter Setup page;
- Step 2 Use cursor keys to select the [Comparator] field;

Step 3 Use soft keys to select

Use solt keys to se	
Soft key	Function
OFF	Comparator is turned off
ON	Comparator is turned on

5.1.6 Beep

The beep function is only effective when the comparator function is turned on. The beep setting allows for GD beep, NG beep, or turn off beep.

Procedures for setting beep:

- Step 1 Enter [Meas Setup] page;
- Step 2 Use cursor keys to select the [Beep] field;
- **Տtep 3** լ

Use soft keys to select			
Soft key	Function		
OFF	Beep is turned off		
GD beep	The beeper sounds when the sorting result is good.		
NG beep The beeper sounds when the sorting result is not good.			

5.1.7 **(Upper Limit)** and **(Lower Limit)**

The reference value for sorting comparison, the upper limit can be turned off.

- To input limit value:
- **Step 1** Enter [Meas Setup] page;
- Step 2 Use cursor keys to select the [Upper Limit] or [Lower Limit] field;
- Step 3 Use numeric keys to input data

How the comparator work

Under the test state, the current measured value is compared with the preset limit reference value. Comparator work flow:

Insulation Resistance:

insulation Resistance.		
1 Lower limit < Current value < Upper limit	Product is good	Display PASS
2 Current value < Lower limit	Product is not good	Display LOWER
3 Current value > Upper limit	Product is not good	Display UPPER

5.1.8 Automatic discharge

When the instrument is in the test state, sample the results once and automatically switch to the discharge state;

To set automatic discharge:

- Step 1 Press [Setup] to enter Setup page;
- Step 2 Use cursor keys to select the [Discharge] field;
- Step 3 Use soft keys to select

· · · · · · · · · · · · · · · ·	
Soft key	Function
OFF	Automatic discharge is turned off
ON	Automatic discharge is turned on

5.2 Start testing

- 5.2.1 Charge Test Discharge
- Figure 5-2 State switching

Charging status: (The charging time is set to 0s, there will be no charging status)

Press the [Charge] key and the instrument will enter the charging state. Negative test output voltage, charging timer starts.

In the charging state, press the [Test] key again to enter the test state directly.

Test status:

Press the [Test] key to enter the test state directly.

Discharge status:

Press the [Discharge] key to enter the test state directly.

6.System Configuration

This section includes the following information: •

•

SYSTEM CONFIG page

SYSTEM INFO page

Under discharge state, press the [Meas] or [Setup] key followed by [SYSTEM] bottom soft key, the <SYSTEM CONFIG> page appears.

6.1 <SYSTEM CONFIG> Page

Under the [Meas] or [Setup] page, press [System] to enter the <System Config> page. Following information can be configured in the <SYSTEM CONFIG> page.

- LANGUAGE
- Date/time setting
- Account settings
- Baud rate setting
- Command handshake
- **Result sending**

All settings in <SYSTEM CONFIG> page will be automatically saved in the system and will be automatically loaded next time when AT688 is turned on.

Figure 6-1 <SYSTEM CONFIG> Page

	0			
KSYSTEM CONF	IG> ENGLISH			SYSTEM CONFIG
DATE/TIME ACCOUNT	2017-01-02 ADMINISTRATOR	13:42 PASSN	2:32 Yord	SYSTEM
BAUD HAND-SHAKING	1200 OFF		2	INFO
RESULT SEND	FETCH			
				SYSTEM SERVICE
				EXIT
SYSTEM CONFIG	6 Page		3.	
			KEY LOCK	13:42

Change System Language [LANGUAGE] 6.1.1

Communication commands: SYSTem:LANGuage {ENGLISH,CHINESE,EN,CN} Two languages (ENGLISH and CHINESE) were supported by AT688.

To change language

- Enter <SYSTEM CONFIG> page
- Step 1 Use the cursor key to select [LANGUAGE] field Step 2
- Step 3 Use the soft keys to select a language you understand. Soft key Function 中文[CHN] Chinese Language ENGLISH English Language

6.1.2

Setting the system date and time

AT688 features a built-in 24-hour clock.

- To change the date:
- Step 1 Enter <SYSTEM CONFIG> page
- Use the cursor key to select [Date] field Step 2
- Use the soft keys to set date. Step 3

Soft key	Function
YEAR INCR+	Increases the year in steps of 1.
YEAR DECR-	Decreases the year in steps of 1.
MONTH INCR+	Increases the month in steps of 1.
DAY INCR+	Increases the day in steps of 1.
DAY DECR-	Decreases the day in steps of 1.

To change the time

- Step 1 Enter <SYSTEM CONFIG> page
- Step 2 Use the cursor key to select [Time] field

Step 3

Use the soft keys to set time.	
Soft key	Function
HOUR INCR+	Increases the hour in steps of 1.
HOUR DECR-	Decreases the hour in steps of 1.
MINUTE INCR+	Increases the minute in steps of 1.
MINUTE INCR+	Decreases the minute in steps of 1.
SECOND DECR-	Increases the second in steps of 1.
SECOND DECR-	Decreases the second in steps of 1.

6.1.3 **Account Setting**

AT688 provides two accounts, administrator and user:

- Administrator: All functions can be configured by administrator except <SYSTEM SERVICE> page, and the parameters set by the administrator are saved in the system memory after a delay of 5 seconds, which is convenient for loading after the next boot.
- User: All functions can be configured by user except < SYSTEM SERVICE> page and <FILE> page. The data modified by the user is restored to the value set by the administrator after the next power-on.
- To Change Account:
- Enter <SYSTEM CONFIG> page Step 1
- Use the cursor key to select [Account] field Step 2
- Step 3 Use the soft keys to set.

Soft key	Function
ADMIN	All functions except the [System Services] page are open. If you forget your password, please call our sales department.
USER	Except the functions of the [System Services] page and the [File] page can be operated, the set data cannot be saved.

To Change Administrator's Password

- Step 1 Enter <SYSTEM CONFIG> page
- Step 2 Use the cursor key to select [Account] field
- Step 3

Use the soft keys to set.	
Soft key	Function
CHANGE PASSWORD	Enter a numeric password of up to 9 digits. The password only
	includes numbers and symbols.
DELETE PASSWORD	Administrator will not be password protected

[Baud Rate] Setting

The instrument provides built-in RS-232 interface. After sensing the signal conversion of the RS-232 interface,

6.1.4

the instrument immediately communicates with the host at the set baud rate, and the keyboard is locked.

Before you can control the AT688 by issuing RS-232 commands from built-in RS-232 controller connected via its DB-9 connector, you have to configure the RS-232 baud rate. If host computer and the instrument's baud rate is different, it will not be able to communicate correctly.

The AT688's built-in RS-232 interface uses the SCPI language.

RS-232 configuration is as follows:

- Data bits: 8-bit
- Stop bits: 1-bit
- Parity: none
- Baud Rate: configurable

To set up the baud rate:

- Step 1 Enter <SYSTEM CONFIG> page
- Step 2 Use the cursor key to select [BAUD] field
- Use the soft keys to select Step 3

Soft key	Function
1200	Use this baud rate if you are using a communication converter with optocoupler isolation.
9600	
38400	
57600	
115200	It is recommended to use this high speed baud rate to communicate with the host computer.

Command Handshake 6.1.5

After the instruction handshake is turned on, all commands sent by the host to the instrument are returned to the host as they are, after which the data is returned.

After the instruction handshake is turned off, the commands sent by the host to the instrument will be processed immediately.

To set up the command handshake:

- Enter <SYSTEM CONFIG> page Step 1
- Use the cursor key to select [Command Handshake] field Step 2
- Use the soft keys to select. Step 3

Soft key	Function
SCPI	Do not use command handshake. If there is no special requirement, please set the command handshake to off.
Modbus	

RS485 [StationNo.] selection 6.1.6

If Modbus (RTU) protocol is used, be sure to set the station number and address of this machine.

This station number can also be used for SCPI communication protocol for multi-machine communication. The SCPI communication protocol extended by Amber Instrument can also be used for multi-computer

communication.

At the beginning of each instruction, add addr #; : The subsystem can select the slave.

Example: addr 02; :fetch? Acquire data from the slave machine representing the station number 2.

- Step 1 Enter <SYSTEM CONFIG> page
- Step 2 Use the cursor key to select [Station No.] field
- Step 3

3	Use the soft keys t	o select.
	Soft key	Function
	00 broadcast	
	01	
	02	
	03	
	04	
	05	
	06	

6.1.7

07	
08	
09	
10	
11	
12	
13	
14	
15	

Under Modbus protocol, in order to facilitate the simultaneous operation of multiple identical instruments, the instruments are allowed to use station number 00 for broadcast communication, and station number 00 is used for communication. The instruments only receive instructions, but do not return response codes.

Instruction handshake (only for SCPI protocol)

After the handshake is turned on, all instructions sent by the host to the instrument will be returned to the host as they are, and then the data will be returned.

After the handshake is closed, the instructions sent by the host to the instrument will be processed immediately.

To set the instruction handshake:

Step 1 Enter the < system configuration > page.

- Step 2 Use the cursor keys to select the [instruction handshake] field;
- Step 3 Use the soft keys to select.

Soft key	Function
OFF	Do not use instruction handshake. No special requirements, please set the instruction handshake to OFF.
ON	

6.1.8 Result Sending (only for SCPI protocol)

Communication commands: {FETCH,AUTO}

The instrument supports the ability to automatically send data to the host. Data is automatically sent to the host after each test is completed, without the host sending a FETCH? command.

After each test, the test results and comparator results are sent to the host. For the format, please refer to the Fetch? subsystem.

To set up the result send:

- Step 1 Enter <SYSTEM CONFIG> page
- **Step 2** Use the cursor key to select [Result Send] field
- **Step 3** Use the soft keys to select

Ose the soft keys to select.	
Soft key	Function
FETCH	Use the command FETCH? To get all measurement data
Auto	Automatically sent to the host after each test is completed

6.2 < System Information> page

Press [Meas] or [Setup] key, press the [System] key at bottom to enter the <System Config> page, press the soft key to select [System Information].

There are no configurable options in the system information page

Figure 6-2

< System Ir	nformation> pa	ge	
<system< td=""><td>IFORMATION></td><td></td><td>SYSTEM</td></system<>	IFORMATION>		SYSTEM
MODEL	AT688 IR M	1ETER	CONFIG
SERIAL N	0. 0000000		-
FW VERSI	ON REV A3.3		SYSTEM
OS	APPLENT AT	OS(TM)	INFO
OS VERSI	0N V6.0		
LOGIC UN	IT REV A0		
SIGNAL U	INIT REV A0		
USB I/F	REV AØ		OUCTEM
			SERVICE
			JENVIOL
			FUTT
			EXIL
			12.42
		FILL LOOK	10.44

7. U disk storage

Press the [Setup] key, and then press the [U disk storage] function key to enter the < U disk storage > page.

Figure 7-1 < USB flash drive storage > page

KUSBDISK	(SETUP>			
FILE:	NEW FILE	TIMER	OFF	
NO.	FILE NAME			
0	<disk not<="" td=""><td>READY></td><td></td><td></td></disk>	READY>		
1	<disk not<="" td=""><td>READY></td><td></td><td></td></disk>	READY>		
2	<pre><disk not<="" pre=""></disk></pre>	READY>		
3	<disk not<="" td=""><td>READY></td><td></td><td></td></disk>	READY>		
4	<disk not<="" td=""><td>READY></td><td></td><td></td></disk>	READY>		
5	<disk not<="" td=""><td>READY></td><td></td><td>PACE</td></disk>	READY>		PACE
6	<disk not<="" td=""><td>READY></td><td></td><td>UP</td></disk>	READY>		UP
7	<disk not<="" td=""><td>READY></td><td></td><td></td></disk>	READY>		
8	<disk not<="" td=""><td>READY></td><td></td><td>PAGE</td></disk>	READY>		PAGE
9	KDISK NUT	READIA		DOWN
USBDisk	setup page		KEY LOCK	14:53

7.1 Create a [new file]

Create [New File] field, which is used to create a new file in the USB flash drive. The file name is user-defined. The file format is fixed to CSV format.

Steps to create a [new file]:

- Enter the < u disk storage > page.
- Step 2 Use the cursor key to select [File] field
- . Step 3

Step 1

Use the soft keys to select.		
Soft key	Function	
Create files	The character keyboard will pop up and enter a custom file name.	
	After input, press the function key [OK] to create a new file, and the file name will be	
	displayed in the list.	

7.2 Save regularly

When the trigger mode is Internal, according to the set time. In the test state, save the data regularly. Other triggering methods of are invalid. Time is entered directly through the numeric keypad.

7.3 **(File)** selection

Step 1 Enter the < u disk storage > page.

Step 2 Use the cursor keys to select [File 0] ~ [File 9] page.

|--|

Select using funct	ion keys.
Soft key	Function
Create files	The character keyboard will pop up and enter a custom file name. After input, press the function key [OK] to create a new file, and the file name will be displayed in the list.

7.4 U disk data storage mechanism

Under internal trigger and external trigger, files store data in different ways.

Internal trigger record

Under the internal trigger, the instrument is in the test state, the timing is up, and the data is stored in the file.

• External trigger record

Under the external trigger, when the instrument is in the test state, once it receives a trigger signal or a trigger instruction, the data will be stored in a file.

• Manual data recording

In the [MEAS] interface, press the function key [Save to USB flash drive] to store the data into a file.

8. PLC (Handler) Interface

This chapter provides information of AT688' s built-in handler interface. Include:

- Pin Terminal
- How to connect and interface schematics
- Timing Chart

AT688 provides users with a full-featured processor interface that includes sorting output, EOC (test completion signal), TRIG (external trigger start) input and other signals. Through this interface, the instrument can be easily controlled automatically with the user system control components features. The Handler interface can only be used in "External Trigger Mode".

8.1 Pin Terminal and signals

Pin Terminal

Table 8-1

Output Terminal (All signals are valid low level)

Description of Handler Interface Output Signals

Pin	Pin Name	Signal Description
1	/EOC	Test completion signal (busy signal). Need to connect to an external power supply!
2	/NG	The comparator NG output. Need to connect to an external power supply!
3	/GD	Comparator GD output. Need to connect to an external power supply!
4	/OPEN	Independent open circuit signal, when open circuit, low level . Need to be connected to external power supply! When the circuit is open, the sorting signals (/NG and /GD) are reset to high level.
5	/KNG	Comparator relay NG output. /KNG and /COM are closed;
6	/COM	Comparator relay output common terminal
7	/KGD	Comparator relay GD output. /KGD and /COM are closed;

Input Terminal

Description of Handler Interface Input Signals

Pin	Pin Name	Signal Description
12	DISCH	Discharge signal (test status is valid). Need to connect to an external power supply!
13	CHAR	Charge/test signal (discharge status is active). Need to connect to an

Table8-2

		external power supply!
24	TRIG	Test the trigger. (Valid only for external trigger). Need to connect external power supply!
25	KLOCK	Keyboard lock signal. Need to connect to an external power supply!

Table 8-3

Power Rating

Description of Handler Interface Power Rating Signals

	1	0 0
Pin	Pin Name	Signal Description
16	EX-GND	External power supply GND
17	EX-VCC	External power supply VCC

8.2 Connection Method

Connect external power supply

Without an external power supply, the Handler only provides the comparator relay output signal! In order for all functions of the Handler to work properly, please connect the appropriate external power supply!

In the case of unknown or uncertain power, the internal power supply cannot be used, otherwise the meter will not work properly.

In low-power applications, using internal power supplies can degrade the instrument's immunity to interference.

Therefore, AT688 cancels the internal power port and recommends the user to select the external power supply.

- Electrical Characteristics
- Power requirements: +3.3V~24VDC

Output signal: Collector output with built-in pull-up resistor. Optocoupler isolation. Low valid. Maximum voltage: Power supply voltage. Input signal: Optocoupler isolation. Low valid. Maximum current: 50mA

Note: To avoid damage to the interface, do not exceed the power supply voltage requirements. To avoid damage to the interface, wire the instrument after it has been turned off. If the output signal is used by users to control the relay, the relay must use a reverse energy release diode.

Figure 8-2

Input terminal schematic

Figure 8-4

Timing Chart 8.3

Table 8-4

Timing	descri	ption	
		D	•

Time	Description
T1	One conversion cycle
T2	Trig signal pulse width
T3	Trig is valid until the start of the conversion interval
T4	AD conversion time (EOC[BUSY]) (current sampling)
T5	Display result time
T6	Sort output to EOC end time
T7	Immediately next conversion start interval
T8	CHARG /test signal low level valid hold time
T9	Delay time before the system enters the charging/testing
T10	DISCH signal low level valid hold time

8.4 **Foot Switch**

In addition to control, the CHARG and DISCH signals of the Handler interface can also be used for external auxiliary key inputs, such as external foot switch is used to switch the discharge or state of charge. Installation method:

Step 1: Connect the switch between the CHARG/DISCH output and GND. Step 2: The EXVCC port provides a suitable external power supply

9. Remote Control

This chapter provides the following information:

- **RS-232** Connection
- Select Baud Rate.
- About SCPI

AT688 can use RS-232 interface (standard configuration) to communicate with the computer to complete all the instrument functions. With standard SCPI commands, users can also easily create a variety of acquisition systems that are suitable for them.

9.1 **RS-232C**

RS-232 is a widely used serial communication standard, also known as asynchronous serial communication standard, for data communication between computers and computers, between computers and peripherals. RS is the English abbreviation of "Recommended Standard", and 232 is the standard number. The standard is officially published by the Electronic Industries Association (EIA) in 1969. It is required to transmit one bit at a time via one data line.

Most serial port configurations are usually not strictly based on the RS-232 standard: 25-pin connectors are used on each port (now computers basically use 9-pin connectors). The most commonly used RS-232 signals are shown in the table:

Table 9-1 Commonly used RS-232 signals

Signal	Sign	25-pin connector pin number	9-pin connector pin
			number
Request to send	RTS	4	7
Clear send	CTS	5	8
Data setup preparation	DSR	6	6
Data carrier detection	DCD	8	1
Data terminal preparation	DTR	20	4
send data	TXD	2	3
Receive data	RXD	3	2
GND	GND	7	5
Request to send	RTS	4	7

Table 9-2

In addition, RS232 has a minimum subset, which is the connection method used by the instrument. The minimum subset of the RS-232 standard

Signal	Sign	9-pin connector pin number
Send	TXD	2
Receive	RXD	3
GND	GND	5

9.1.1 **RS232C** Connection

RS-232 serial interface can be interconnected to the serial interface of a controller (eg PC or industrial computer) via a straight-through DB-9 cable.

Note: The instrument cannot use a null modem cable.

Users can make or purchase a 9-pin straight-through cable directly from the Applent Instruments Inc.. User-made 3-wire cable should pay attention to:

Using the DB9 port that comes with the PC, may need to short the 4-6, 7-8 of the DB-9 connector (needle) on the computer side.

Figure 9-1

RS-232 interface on the rear panel

Recommendation: To avoid electrical shock, turn off AT688 when connect or disconnect the connector.

AT688 default communication settings:

Transmission method: Full-duplex asynchronous communication with start and stop bits Data bits: 8-bit Stop bits: 1-bit Parity: none

9.2 Handshake Protocol

Since the AT688 uses the minimum subset of the RS-232 standard and does not use hardware handshaking signals, the AT688 can use software handshaking in order to reduce possible data loss or data errors in communication. High-level language software engineers should strictly follow the handshake below agreement to make preparation of computer communication software:

- The instrument terminator only accepts ASCII format, and the command response also returns ASCII code.
- $\bullet~$ The command string sent by the host must be terminated with NL (' \n'). The instrument terminator starts executing the command string after receiving the terminator.
- The instrument can set the command handshake: the instrument will send the character back to the host immediately after receiving one character. The host can only continue to send the next character after receiving the returned character.

Tip: If the host cannot accept the data returned by the instrument, you can try to solve it by using the following methods:

1. The software handshake is turned off, please refer to the <System Setup> page of the instrument to turn it on.

2. The serial port connection is faulty, please check the cable connection.

3. The communication format of the high-level language program on the computer side is incorrect. Try on checking the serial port number, whether the communication format is correct, and the baud rate is the same as the instrument setting.

4. If the instrument is parsing the last command and the host cannot receive the response from the instrument, please try again later.

<The problem still cannot be solved, please consult Applent Technical Engineer immediately>

9.3 SCPI Language

SCPI-Standard Commands for Programmable Instruments is a universal command set used by Applent Instruments for test instruments. SCPI, also known as TMSL-Test and Measurement System Language, was developed by Agilent Technologies under IEEE 488.2 and has been widely adopted by test equipment manufacturers until now.

Reference:

The instrument built-in terminator is responsible for user command format parsing. Since the terminator is based on the SCPI protocol, but not exactly the same as the SCPI, please read the "SCPI Command Reference" chapter carefully before starting work.

10. SCPI Command Reference

This chapter contains the following information:

- Terminator rules of the terminator
 - Command syntax command line writing rules
 - Query syntax writing rules of query command
- Query response format of the query response
- Command reference

This section provides all SCPI commands used by AT688. With these SCPI commands, users can complete control over all functions of the instrument.

10.1 Terminator

Host can send a string of command to instrument, instrument terminator will begin parsing after it captures end mark (\n) or after input buffer overflows.

For example :

AAA:BBB CCC;DDD EEE;:FFF

Legal command string:

AT688 terminator is responsible for parsing and performing all commands, before programming, users must know about parsing rules.

10.1.1 Terminator Rules

- 1. Terminator only parses and responds ASCII code's data.
- SCPI command string must be ended with terminator NL('\n'ASCII 0x0A), terminator will begin performing command string only after it receives end mark or after buffer overflows.
- **3.** If command handshake is turned on, every time terminator receives one string, it will promptly return this string to the host, only when host receives this returned string, can it continues sending the next string.
- 4. After terminator parses error, it will promptly stop parsing, and the current command is canceled.
- 5. When terminator parses the query command, it will terminate parsing this command string, the latter command string will be ignored.
- 6. When parsing command string, terminator is case insensitive.
- 7. Terminator supports command abbreviated form, please refer to the latter chapter regarding abbreviation norms.

10.1.2 Notation Conventions and Definitions

This chapter employs some marks, these marks are not a part of command tree; they are only for better understanding of command string.

- the character in <> means this command's parameter
 the character in [] means optional command
 When there includes several parameter items in {}, means that users can only choose one item from it.
 - () the abbreviated form of parameter is put in ()
 - Capital letter Abbreviated form of command.

10.1.3 Command Structure

For the SCPI command, the tree structure can be down to three levels (Note: the command parser of this instrument can parse any layer down), which is called the subsystem command at the highest level. The subordinate command is valid only if the subsystem command is selected. SCPI uses a colon (:) to separate the high level command and the low level command.

Figure 10-1 Command Tree Structure

Multiplier is Case Insensitive, its writing style is different from standard name.

10.2.3 Separator

The AT688 terminator only accepts allowed separators, terminator will occur "Invalid separator (illegal separator)" error if beyond this separator, and these separators include:

;	a semicolon that separates two commands.
	Example: AAA:BBB 100.0; CCC:DDD
:	colon, used for separate command tree, or restart command tree.
	Example: AAA: BBB: CCC 123.4; DDD: EEE 567.8
?	question mark, used for query
	Example: AAA ?
	space, used for separate parameter
	Example: AAA:BBB 1.234
	-

Command Reference 10.3

All commands are interpreted in the order of subsystem commands. All subsystems are listed below:

- Display display page subsystem
- Function measurement function subsystem
- TRIGger trigger subsystem
- COMParator sorting subsystem
- SYSTem •
- FETCh
 - subsystem subsystem
- STATe CORRection subsystem •

Public command:

IDN? Instrument Information Query Subsystem

subsystem

10.4 **Display Subsystem**

DISPlay subsystem can be used to switch between different display pages or to display a string of text on the page prompt bar.

Figure 10-2	DISPlay Subsystem tree		
DISPlay	: PAGE	{MEASurement(MEAS),SETUp(MSET),SYSTem(SYST),	
		SYSTEMINFO(SINF) }	
	:LINE	<string></string>	

10.4.1 **DISPlay:PAGE**

	DISP:PAGE Used to switch to the specified page.	
Command Syntax:	DISPlay:PAGE <page name=""></page>	
Parameter:	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	
	SETUP (MSET) SETUP page	
	SYSTEm (SYST) SYSTEM CONFIG page	
	SYSTEMINFO(SINF) SYSTEM INFORMATION page	
Example:	SEND>disp:pagesetup <nl> // switch to the Setup page</nl>	
Query Syntax	DISP: PAGE?	
Query Response:	<pre><pre><pre><pre><pre>abbreviation meas mset syst sinf</pre></pre></pre></pre></pre>	
Example:	SEND>disp:page?	
	RET>meas	
	SEND>disp:page meas;page?	
	RET>meas	

40 AT688 User's Guide

10.4.2

DISP:LINE

DISP:LINE Used to display a string of text in the prompt bar at the bottom of the page. The text can display up to 30 characters and the text will stay for 10 seconds.

Command Syntax:	DISPlay:LINE <string></string>		
Parameter:	<string> max.30 characters</string>		
Example:	SEND>DISP:LINE "This is a Comment."		
Query Syntax:	DISPlay:LINE?		
Query Response:	The prompt bar text on the screen, if the prompt bar is empty, will return NULL.		

10.5 Function Subsystem

Measurement function subsystem is used to set the instrument test function, including test parameters and range settings.

Figure 10-3	Function Subsystem tree		
	: VOLTage	<float></float>	
Function	: APERture	{slow,med,fa	st}
	: TIMEr	<float></float>	
	: count	{UP,DOWN}	
	: CHECK	{ON,OFF}	
	: RANGe	{ <integer>,M</integer>	IN,MAX}
		: mode	{hold,auto,nom}

10.5.1 FUNCtion: VOLTage

	FUNCtion: VOLTage Used to set the test	: voltage.
Command Syntax:	FUNCtion:VOLTage <float></float>	
Parameter:	<float></float>	
	Floating point number, 1~10	00
Example:	SEND>FUNCtion:VOLT 10.2	// Set the current voltage to 10.2V
	SEND>FUNCtion:VOLT 500	//Set the current voltage to 500V
Query Syntax:	FUNCtion: VOLT?	
Query Response:	<float></float>	
	Floating point number, 1~10	00
Example:	SEND> FUNCtion: VOLT?	
	RET>10.0	
	Restriction: Can only be us	sed in the discharge state.

10.5.2 FUNCtion: APERture

	FUNCtion: APERture Used to set the sampling speed.		
Command Syntax:	FUNCtion:APERture {slow,med,fast}		
Parameter:	{slow,med,fast}		
	Here, slow: slow speed med: medium speed fast: fast speed		
Example:	SEND>FUNCtion: APERture fast // Set the sampling speed to fast		
Query Syntax:	FUNCtion: APERture?		
Query Response:	{slow,med,fast}		
Example:	SEND>FUNCtion:APERture?		
	REI>fast		

10.5.3 FUNCtion: TIMEr

	FUNCtion: TIMEr Used to set the charge timer.
Command Syntax:	FUNCtion:TIMEr <float></float>
Parameter:	<float></float>
	Mixed floating point number, 0-999.9, Without a unit.
Example:	SEND>FUNCtion: TIMEr 100.1 // Set the charging time to 100.1s
	SEND>FUNCtion: TIMEr 0 //Set the charging time to 100.1s (turn of charging time)
Query Syntax:	FUNCtion:TIMEr?
Query Response:	<float></float>

	Standard floating point number, 0.0-999.9
Example:	SEND>FUNCtion:TIMEr?
	RET>50.0
	Restriction: Can only be used in the discharge state.
	· · · · · · · · · · · · · · · · · · ·
10.5.4	FUNCtion: Count
	FUNCtion: Count Used to set the timing mode of the charging timer.
Command Syntax:	FUNCtion:Count {UP,DOWN}
Parameter:	{UP,DOWN}
1 41 41 41 4 4 4 4	Here, UP: Positive timing DOWN: Countdown
Example:	SEND>FUNCtion: Count UP // Set the charging timing mode to positive timing
1	SEND>FUNCtion: Count DOWN // Set the charging timing mode to countdown
Query Syntax,	FUNCtion: Count?
Query Response:	{UP.DOWN}
Example.	SEND>FUNCtion: Count?
Example.	
	REI-UP Restriction. It can only be used in the discharge state
	Restriction. It can only be used in the discharge state.
10.5.5	FUNCtion: Check
	FUNCtion: Check – Used to choose whether to open contact detection
Command Syntax.	FUNCtion: Check {ON.OFF}
Parameter.	{ON.OFF}
i arameter.	Here, ON: turned on OFF: turned off
Example:	SEND>FUNCtion:Check_ON//Contact detection turned on
	SEND>FUNCtion: Check OFF // Contact detection turned off
Onem: Sumtor	FUNCtion: Chock?
Query Syntax:	
Query Response:	
Example:	SEND>{ON,OFF}?
	RE1>0N
	Restriction: Can only be used in the discharge state.
10.5.6	FUNCtion: RANGe
	FUNCtion: RANGe Used to set the instrument range number. If the current range is automatic, it will be
	changed to lock
Command Syntax.	FUNCtion: RANGe { <integer>.MIN.MAX}</integer>
Parameter.	{ <integer>.MIN.MAX}</integer>
i arameter.	Here,
	<pre><interger> Indicates the range number, integer 1-6</interger></pre>
	MIN: Indicates the minimum range,=1
	MAX: Indicates the maximum range,=6
Example:	SEND> func:rang 5 // Set the current range to range 5
	SEND> func:rang min // Set the current range to range 1
	SEND> func: rang max // Set the current range to range 6
Query Syntax.	FUNCtion: RANGe?
Query Response:	<integer></integer>
Query Response.	Range number, integer 1-6
Example:	SEND> FUNCtion:RANGe?
-	RET>5
10.5.7	FUNCtion: RANGe:Mode
	FUNCtion: RANGe: Mode Used to set range auto. lock or nominal.
Command Svntax.	FUNCtion:RANGe:Mode {Auto,Hold,Nom}
Parameter:	{Auto,Hold,Nom}
	Here, Auto: Auto range Hold: Hold range Nom: Nominal range

Example:	SEND> FUNCtion:RANGe:Mode Auto	//Set the current range to automatic
	SEND> FUNCtion:RANGe:Mode Hold	//Set the current range to hold
	SEND> FUNCtion:RANGe:Mode Nom	//Set the current range to nominal
Query Syntax:	FUNCtion:RANGe:Mode?	
Query Response:	{auto,hold,nom}	
Example:	SEND>FUNCtion:RANGe:Mode?	
	RET>auto	

10.6 TRIGger Subsystem

TRIGger subsystem is used to control the trigger mode and perform bus triggering.

Figure 10-4	TRIGger Subsystem tree		
	:IMMediate		
TRIGger	: SOURce	{MAN, INT, BUS, EXT}	
	: Delay	<float></float>	
	:Edge	{Rising,Falling}	

10.6.1 TRIGger: IMMediate

TRIGger: IMMediate command is used to trigger a measurement (in bus trigger mode).

Command Syntax:	TRIGger: IMMediate	
Parameter:	None	
Example:	SEND>TRIG:IMM	// Start a trigger
Query Syntax:	None	
	Restriction: Can only h	oe used in bus trigger mode.

10.6.2 TRIGger: SOURce

TRIGger: SOURce command is used to select the trigger source.			
Command Syntax:	<pre>TRIGger:SOURce {MAN, INT, BUS, EXT}</pre>		
Parameter:	{MAN, INT, BUS, EXT}		
	Here, MAN: manual trigger		
	INT: internal trigger		
	BUS: bus trigger		
	EXT: external trigger		
Example:	SEND> TRIG:SOUR BUS // Select bus trigger		
Query Syntax:	TRIGger:SOURce?		
Query Response:	{MAN, INT, BUS, EXT}		
Example:	SEND>TRIGger:SOURce?		
	RET> EXT		
10.6.3	TRIGger: Edge		
	TRIGger: Edge command is used to select the edge of the external trigger.		
Command Syntax:	TRIGger:Edge {Rising,Falling}		
Parameter:	{Rising,Falling}		
	Here, Rising: Rising edge trigger		
	Falling: Falling edge trigger		
Example:	SEND> TRIG:Edge Rising // Select rising edge trigger		
Query Syntax:	TRIGger:Edge?		
Query Response:	{Rising,Falling}		
Example:	SEND> TRIGger:Edge?		
	RET> Falling		

10.7 COMParator Sorting Subsystem

COMParator subsystem is used to set the comparator parameters, including the upper and lower limit

	Specificati	
	reference values and signal settings	
Figuro 10- 5	COMParator corting Subsystem trac	
rigule 10-5	· MODE {ON_OFF}	
COMParator	· limit {float1,float2}	
	: Been {ON, OFF}	
10.7.1	COMParator:MODE	
	COMParator:MODE command is used to set whether the comparator is turned on.	
Command Syntax:	COMParator:MODE {ON,OFF}	
Parameter:	{ON,OFF}	
	Here, ON : comparator is turned on	
	OFF: comparator is turned off	
Example:	SEND> COMParator: MODE ON // Select comparator to turn on	
Query Syntax:	COMParator:MODE?	
Query Response:	{ON,OFF}	
Example:	SEND> COMParator: MODE?	
	RET> OFF	
10.7.2	COMParator:LIMit	
	COMParator:LIMit command is used to set the upper and lower limits of the comparator resistance.	
Command Syntax:	COMParator:LIMit {float1,float2}	
Parameter:	{float1,float2}	
	Here,	
	float1: Lower limit of comparator resistance	
	float2: Upper limit of comparator resistance	
Example:	SEND> COMParator: Limit 2E10, 1E13 // Set the lower limit to 20G and the upper limit to 10	
Query Syntax: COMParator:LIMit? Query Response: {float1,float2}		
Example:		
Example:	RET> 2.000000e+10,1.000000e+13	

10.7.3 **COMParator:Beep**

	COMParator:Beep command is used to set the comparator beeper switch.
Command Syntax:	COMParator:Beep {OFF,GD,NG}
Parameter: <i>Example</i> :	{OFF,GD,NG} here, OFF: turned off GD: GD beeper NG: NG beeper
	SEND> COMParator: Beep GD // When the comparator is selected, the beeper will sound.
Query Syntax:	COMParator:Beep?
Query Response: Example:	{OFF,GD,NG}
	SEND> COMParator: Beep?
	RET> GD

10.8 SYSTem Subsystem

SYSTem subsystem is used to set system-related parameters.

Fi	gure 10- 6	SYSTem Subsystem tree	
	SYSTem	:LANGuage	{ENGLISH,CHINESE,EN,CN}
		:SHAKEHAND (SHAK)	{ <i>ON</i> , <i>OFF</i> }
		:SENDmode	{Auto,Fetch}

10.8.1 SYSTem:LANGuage

Instrument language settings.

44 AT688 User's Guide

Command Syntax:	SYSTem:LANGuage {ENGLISH,CHINESE,EN,CN}		
Example:	SEND>SYST:LANG EN // Set to English display		
Query Syntax:	SYST: LANG?		
Query Response:	{ENGLISH, CHINESE}		
Query Response:	{OFF,ON}		
10.8.2 SYSTem:SHAKhand Communication Handshake Command			
	After the communication handshake is turned on, the instrument will return the received command to the host as it is, and then return the data.		
Command Syntax:	SYSTem:SHAKhand {ON,OFF}		
Example:	SEND>SYST: SHAK ON		
Query Syntax:	SYSTem:SHAKhand?		
Query Response:	<pre>{on,off}</pre>		
10.8.3	SYSTem:SENDmode Get Mode Command		
	Used to set the setting of the measurement result acquisition mode.		
Command Syntax:	SYSTem:SENDmode {auto,Fetch}		
Parameter:	{auto,Fetch}		
	Here, auto: Automatically return results		
	Fetch: return results via sending FECH?		
Example:	SEND> SYSTem:SENDmode Auto		
Query Syntax:	SYSTem: SENDmode?		
Query Response:	{auto,Fetch}		
Example:	SEND> SYSTem:SENDmode?		

10.9 FETCh Subsystem

RET> auto

Figure 10- 7	FETCh? Subsystem tree		
FETCh?			
	FETCh? Used to get test data. Before using this command, users need to set [Result Send] field under the <system configuration=""> page to [FETCH].</system>		
Command Syntax:	FETCh?		
Parameter: According to measurement parameter: <float>, <float>, {PASS, UPPER,</float></float>			
	Here, <float> Floating point number, Rx</float>		
	<float> Floating point number, Ix</float>		
	{PASS,UPPER, LOWER,OPEN} Sorting results and contact test results		
Example: SEND> FETCh?			
RET> 1.008860e+09,9.912178e-08,PASS			
	Restriction: Only valid in the test state.		

10.10 STATe Subsystem

 Figure 10-8
 STATe subsystem is used to convert the state of the instrument.

 STATe
 CHARage

STATe	: CHARage
	: DISCharge

10.10.1 STATe?

STATe? Used to query the working state of the instrument;	
Command Syntax:	STATe?

D	(shaway disshaway test)	
Parameter:	{cnarge,discnarge,test}	
	charge: charging state	
	discharge: discharging state	
	test: test state	
Example:	SEND> STATe?	
	RET> discharge	
Query Syntax:	COMParator:Beep?	
Restriction:	None	
	Note: The STATe subsystem commands, including the subordinate commands, are state switch commands. The state switch command can only be placed at the end of the command string.	
10.10.2	STATe: DISCharge	
	Switching from the state of charge or test state to discharge state.	
Command Syntax:	STATe:DISCharge	
	No parameter	
Example:	SEND> STAT? // Query current status	
	RET> test // Current status is test status	
	SEND> STAT:DISC // Switch to discharge status	
Query Syntax:	No query	
10.10.3	STATe: CHARage	
Common 1 Souther		
Command Syntax:	No parameter	
Example:	SEND > STAT2 / / Query the current state	
	RET > discharge //The current state is the discharge state	
	SEND > STAT: CHAR / / switch to the charging state	
	SEND > STAT? / / Query the current state	
	RET > charge //The current state is the charging state	
	SEND > STAT CHAR //Switch to test state	
Query Syntox.		
Query Syntax:	no droti	

10.11 CORRection Subsystem

Figure 10- 9	CORRection Subsystem tree
CORRection	
	CORRection subsystem clears the instrument to zero. Please leave the test leads open before clearing.
Command Syntax:	CORRection
	No parameter
Example:	SEND > CORR // start clearing zero
	RET > Open Clear Zero Starting //Please wait for clearing zero
	RET > PASS //Clear completed
Query Syntax:	No query
	Note: The positive test leads must first be opened and left unconnected, not in contact with anything. Then send a clear calibration command. In clear, the command parser refuses to accept any commands.

10.12 IDN? Subsystem

Figure 10- 10	IDN? Subsystem tree	
IDN?		
	IDN? subsystem is used to return the version number of the instrument.	
Query Syntax:	IDN?	
Query Response:	<manufacturer>,<model>,<sn>,<revision></revision></sn></model></manufacturer>	
	Manufacturer, model, serial number, instrument version	
Example:	SEND> IDN? <nl></nl>	
	RET> APPLENT, AT688, 0000000, REV A1.0 <nl></nl>	

11. Modbus (RTU) protocol

2 bytes

- This chapter contains the following information::
 - Data format-Understand Modbus communication format
 - Function
 - Variable region
 - Function code

11.1 Data format

We follow Modbus(RTU) communication protocol, and the instrument will respond to the instructions of the upper computer and return the standard response frame.

Ref:

1

You can contact the sales department of our company to obtain the communication test tool of Amber Instrument, which contains Modbus communication debugging method. Includes CRC-16 calculator and floating-point number, which is converted into Modbus floating-point number format.

11.1.1 Instruction frame Figure 11-1 Modbus instruction frame Slave Function address CRC-16

CRC-16 calculation range

Table 11-1Instruction frame description

1

	A squelch interval of at least 3.5 characters is required.				
Address of slave	1 byte				
station	Modbus can support 00~0x63 slave stations.				
	Specify 00 when broadcasting uniformly.				
	In instruments without RS485 option, the default slave address is 0x01.				
Function code	1 byte				
	0x03: Read out multiple registers				
	0x04: =03H, Do not use				
	0x06: Write to a single register, which can be replaced by 10H.				
	0x08: Echo test (only for debugging)				
	0x10: Write to multiple registers				
Data	Specify the register address, number and content.				
CRC-16	2 bytes, with lower bits first.				
	CyclicRedundancy Check				
	Calculate all the data from the station address to the end of the data to obtain				
	the CRC16 check code.				
	A squelch interval of at least 3.5 characters is required.				

11.1.2 CRC-16 Calculation method

- 1. Set the initial value of CRC-16 register to 0xFFFF.
- 2. XOR the CRC-16 register and the first byte of information, and return the calculation result to the CRC register.
- 3. Fill the MSB with 0, and shift the CRC register by 1 bit to the right.
- 4. If the bit moved from LSB is "0", repeat step (3) (processing the next shift). If the bit moved from LSB is "1", XOR operation is performed on CRC register and 0xA001, and the result is returned to CRC register.
- 5. Repeat steps (3) and (4) until 8 bits are moved.
- 6. If the information processing is not finished yet, XOR the CRC register and the next byte of the

information, and return it to the CRC register. Repeat from step (3).

7. Attach the calculation result (the value of CRC register) from the lower byte to the information.

The following is a CRC calculation function in VB language:

```
Function CRC16(data() As Byte) As Byte()
                                            'CRC register
   Dim CRC16Lo As Byte, CRC16Hi As Byte
   Dim CL As Byte, CH As Byte
                                     'polynomial code &HA001
   Dim SaveHi As Byte, SaveLo As Byte
   Dim i As Integer
   Dim flag As Integer
   CRC16Lo = \&HFF
   CRC16Hi = &HFF
   CL = \&H1
   CH = \&HA0
   For i = 0 To UBound (data)
       CRC16Lo = CRC16Lo Xor data(i) 'Each data is XOR with CRC register.
      For flag = 0 To 7
          SaveHi = CRC16Hi
          SaveLo = CRC16Lo
          CRC16Hi = CRC16Hi \ 2
                                    ' The high bit is shifted to the right by
one bit.
          CRC16Lo = CRC16Lo \setminus 2
                                     'Move the lower bit to the right by one
bit.
          If ((SaveHi And &H1) = &H1) Then 'If the last bit of the upper byte
is 1
             CRC16Lo = CRC16Lo Or &H80
                                         'The lower byte is shifted to the
right, followed by the front. 1
          End If
                            'Otherwise, zero will be added automatically.
          If ((SaveLo And &H1) = &H1) Then 'If LSB is 1, XOR with polynomial
code.
              CRC16Hi = CRC16Hi Xor CH
             CRC16Lo = CRC16Lo Xor CL
          End If
      Next flag
   Next i
   Dim ReturnData(1) As Byte
   ReturnData(0) = CRC16Hi
                                 'CRC high position
   ReturnData(1) = CRC16Lo
                                 'CRC low post
   CRC16 = ReturnData
   End Function
```

```
Reference: :
```

My company's "Amber Instrument Communication Testing Tool" contains Modbus communication debugging methods. Includes CRC-16 calculator.

Figure 11-2

The calculate CRC-16 data needs to be append to that end of the instruction frame, for example: 1234H: Modbus Additional CRC-16 value

Slave address	Function code	Dat	Data		CRC-16		
		Ĩ	1	Low H'34	Heigh I H'12		
1	1			21	oytes		

CRC-16 calculation range

11.1.3 Response frame

Unless it is an instruction broadcast by 00H slave station address, other slave station address instruments will return a response frame.

Slave address	Function error code		CRC-16
			Ĩ
1	1	1	2byte

CRC-16 calculation range

Table 11-2Exception frame description

Address of slave	1byte
station	Return from the station address as it is
Function code	1byte
	BIT7(0x80) on the function code logic OR (OR) of the instruction frame, for
	example: 0x03 OR 0x80 = 0x83
Error code	Abnormal code:
	0x01 Error in function code (function code is not supported)
	0x02 Register error (register does not exist)
	0x03 Data error
	0x04 Execution error
CRC-16	2 bytes, with lower bits first.CyclicRedundancy Check
	Calculate all the data from the station address to the end of the data to obtain
	the CRC16 check code.

11.1.4 No response.

Under the following circumstances, the instrument will not do any processing or respond, resulting in communication timeout.

- 1. The slave address is wrong.
- 2. Transmission error
- 3. CRC-16 Error
- 4. Wrong number of digits. For example, the total number of digits in function code 0x03 must be 8, but the received digits are less than 8 or more than 8 bytes.
- 5. When the slave station address is 0x00, it represents the broadcast address, and the instrument does not respond.

11.1.5 Error code

Table 11-3

Description error code

Error code	Name	Explain	Priority
0x01	Code error	Function code does not exist.	1
0x02	Register error	Register does not exist.	2
0x03	Data error	Wrong number of registers or bytes.	3
0x04	Execution error	The data is illegal, and the written data is not	4
		within the allowed range.	

11.2 Function code

The instrument only supports the following function codes, and other function codes will respond to error frames.

Table 11-4

Function code

Function code	Name	Explain
0x03	Read out multiple registers	Read out data of a plurality of consecutive registers
0x04	Same as 0x03	Use 0x03 instead.
0x08	Echo test	The received data is returned as it is
0x10	Write to multiple registers	Write to multiple consecutive registers

11.3 Register

The number of registers of the instrument is 2-byte mode, that is, 2 bytes must be written each time. For example, the register of speed is 0x3002, the data is 2 bytes, and the value must be written in 0x0001. Data:

The instrument supports the following numerical values:

1. 1 register, double-byte (16-bit) integer, for example: $0x64 \rightarrow 0064$

Ref:

- 2. 2 registers, four-byte (32-bit) integers, for example: $0x12345678 \rightarrow 12345678$
- 3. 2 registers, four-byte (32-bit) single-precision floating-point numbers, 3.14 \rightarrow 40 48 F5 C3

My company's "Amber Instrument Communication Testing Tool" contains Modbus communication debugging methods. A floating-point converter is included.

11.4 Read out multiple registers

Figure 11-5	Figure	11-5
-------------	--------	------

Read out multiple registers (0x03)

Slave address	Function code	Read start address	Number of Elements	CRC-16
	H'03			
1	1	2	2	2bety

The function codes of the read-out registers are 0x03.

Table 11- 5

Read out multiple registers

	Name	Explain
	Address of slave	When no RS485 address is specified, the default value is 01.
	station	
0x03	Function code	
	Start address	Register start address, please refer to Modbus instruction set.
	Number of read	Number of consecutive registers read. Please refer to Modbus
	registers0001~006A	instruction set to ensure that these register addresses exist,
	(106)	otherwise an error frame will be returned.
CRC-16	Verify code	

Figure 11-6 Read out the response frame of multiple registers (0x03)

Slave address	Function code	Byte Count	Read data (element quantity part)	CRC-16
	H'03		1	1
1	1	1	0~212(2X106)	2

	Name	Explain
	Address of slave station	Return to the original
0x03	Function code	No abnormality: 0x03
Or 0x83		Error code: 0x83
	Number of bytes	= Number of registers x2
		For example: 1 register returns 02
	Data	Read data
CRC-16	Verify code	

11.5 Write to multiple registers

Fi	gure 11-	7 W	rite to mult	tiple regis	sters (0x1	10)			
	Slave address	Function code	Read star address	t	Number of elements	Byte count	Writ (element n	e data umber part)	CRC-16
		H'10						 	
1 Table 11- 6		1 Writ	2 rite to multiple reg		2 rs	1	0~208	8(2X104)	2
				Name		Explain			
				Address station	of slave	e When no RS	485 address is	specified, the def	ault value is 01.
		0x	:10	Function c	ode				

		Start address		Register start address, please refer to Modbus instruction set.					
		Number of w	ritten	Number	Number of consecutive registers read. Please refer to Modbus				
		registers 000	1~0068	instructio	on set to ensure that the	ese register addresses exist,			
		(104)		herwise an error frame will be returned.					
	Number of bytes				= Number of registers x2				
CRC-16	j	Verify code							
Vrite to	multip	ole registers	(0x03) r	esponse	frame				
ac	Slave ddress	Function Read s code addre		start Number CRC–16 ess of elements					
		H'10	1		1				
	1	1	2		2	2betv			

Name	Explain
Address of slave	Return to the original
station	
Function code	No abnormality: 0x10
	Error code: 0x90
Start address	
Number of registers	
CRC-16 Verify code	
	Name Address of slave station Function code Start address Number of registers CRC-16 Verify code

11.6 Echo test

Figure 11-9

Figure 11-8

The echo function code 0x08 is used for debugging Modbus. Echo test (0x08)

Instruction frame

Slave address	Function code	Fixed value	Test data	CRC-16
	H'08	H'00 H'00	1	T
1	1	2	2	2bety

Response frame

Slave address	Function code	Fixed value		Test data	CRC-16
	H'08	H'00	H'00	Ĩ	
1	1	2	2	2	2bety

	Name	Explain
	Address of slave station	Return to the original
0x08	Function code	
	Fixed value	00 00
	Test data	Arbitrary value: for example 12 34
	CRC-16 Check code	

For example:

Assume that the test data is 0x1234:

Instructions	01	08	00 00	12 34	ED 7C(CRC-16)
Response	01	08	00 00	12 34	ED 7C(CRC-16)

12. Modbus (RTU) instruction set

This chapter includes the following aspects.: • Register address

Be sure to contact the sales department of our company to obtain the communication test tool of Amber Instrument, which contains Modbus communication debugging method. Includes CRC-16 calculator and floating-point number, which is converted into Modbus floating-point number format.

Note: Unless otherwise specified, the values of instruction and response frames in the following descriptions are hexadecimal data.

12.1 Register overview

All register addresses used by the instrument are listed below, and any address that is not in the table will return an error code 0x02.

	Register Overview		
Register address	Name	Data	Explain
2000	Read the voltage measurement	4-byte floating point	Read-only register, data occupies 2
	result	number	registers.
2002	Read insulation resistance	4-byte floating point	Read-only register, data occupies 2
	measurement results.	number	registers.
2004	Read the leakage current	4-byte floating point	Read-only register, data occupies 2
	measurement result	number	registers.
2006	Get comparator result	2-byte integer	Read-only register, data occupies 1
		FFFF: Qualified	register.
		0000: Unqualified	
3000	Output voltage	4-byte floating point	Read and write registers, data occupies
		number	2 registers.
3002	Test speed	0000: low speed	Read-write register, 2-byte integer
		0001: intermediate speed	
		0002: fast	
3004	Charging time	4-byte floating point	Read and write registers, data occupies
		number	2 registers.
3006	Insulation resistance range	0001~0006	Read-write register, 2-byte integer
3008	Insulation resistance range mode	0000: Automatic	Read-write register, 2-byte integer
		measuring range	
		0001: Manual range	
		0002: Nominal range	
300A	Contact detection	0000: OFF	Read-write register, 2-byte integer
		0001: OPEN	
3010	Trigger mode	0000. Internal	Read-write register. 2-byte integer
• • • • •		0001. Manual	
		0002, Bus	
		0002: Bus	
2012	Triananalan		Deed muite meriden 2 hete interen
3012		0000: Kising edge trigger	Read-while register, 2-byte integer
		0001: Falling edge	
		trigger	
3014	Automatic discharge	0000: OFF	Read-write register, 2-byte integer

Table 12-1 Register overview

		0001: ON	
3016	Beeper	0000: OFF	Read-write register, 2-byte integer
		0001: GD beeper	
		0002: NG beeper	
3020	Comparator status	0000: comparator is	Read-write register, 2-byte integer
		turned off	
		0001: comparator is	
		turned on	
3022	Upper limit of insulation	4-byte floating point	Read and write registers, data occupies
	resistance	number	2 registers.
3024	Upper limit of insulation	4-byte floating point	Read and write registers, data occupies
	resistance	number	2 registers.
5000	Get the status of the test.	fixed value: 0001	Read-only register with 2 bytes of data.
5100	Keyboard lock	0000: unlock	Read-write register with 2 bytes of data.
		0001: lock	
5200	Charging/testing	fixed value: 0001	Read-write register with 2 bytes of data.
5300	discharge	fixed value: 0001	Read-write register with 2 bytes of data.
5400	Trigger once = Handler Trig pin	fixed value: 0001	Read-write register with 2 bytes of data.

12.2 Obtain measurement data

12.2.1 Obtain the measurement results.

Registers 2000~2004 are used to obtain instrument measurement data.

Instruction:

1	2	3	4	5	6	7	8
01	03	2000		0002		CRC-16	
slave	read	register		number of		Check co	ode
station				regist	ers		
Respond							

1	2	3	4	5	6	7	8	9
01	03	byte	Single pr	recision floa	CR	C-16		

• Acquire a voltage measurement result:

Send:

1	2	3	4	5	6	7	8	
01	03	20	00	00	02	CF	CB	
slave	read	regi	register		number of		code	
station				regis	ters			
Respond:								
								-

1	2	3	4	5	6	7	8	9
01	03	04	42	C7	8F	9B	7A	2D
01	03	byte	Single p	recision floa	CRC-:	16		

B4~B6 are measured data: 42C78F9B represents 99.78 (V) (the lower bit comes first)

• Get resistance measurement results.

Send:

2	3	4	5	6	7	8
03	20	02	00	02	6E	0B
Eead	Regis	ter	Numbe regist	er of ers	Check co	ode
	2 03 Eead	2 3 03 20 Eead Regist	2 3 4 03 20 02 Eead Register	2 3 4 5 03 20 02 00 Eead Register Number regist	2 3 4 5 6 03 20 02 00 02 Eead Register Number of registers	2 3 4 5 6 7 03 20 02 00 02 6E Eead Register Number of registers Check constraints

Respond:

Respond.		-							
1	2	3	4	5	6	7	8	9	
01	03	04	60	AD	78	EC	56	5F	
01	03	Byte	Single precision floating point number CRC-16						

B4~B6 are the measured data: 60AD78EC represents 1E20 (the lower bit comes first).

• Acquire voltage and resistance measurement results

• Send:

1	2	2	3	4	5		6	7		8		
01	0	3	20	00	00)	04	4F		C9		
Slave	Re	ad	Regi	ster		Numbe	r of	Ch	eck cod	e		
station						registe	ers					
● Re	espond:										-	
1	2	3	4	5	6	7	8	9	10	11	12	13
01	03	08	42	C8	9B	7A	60	AD	78	EC	30	7F

4 ~ B7: 42c89b7a represents 100.3

Resistance 8 ~ B11: 60 Ad78EC represents 1E20

12.2.2 **Obtaining Comparator Results [2006]**

The register 2006 records the comparator result, which is opened before use. 16-bit storage domain:

Among: BIT15~BIT10 Representative voltage file 0000: Unqualified FFFF: qualified

Send:

1	2	3	4	5	6	7	8
01	03	20	06	00	01	6F	СВ
Slave station	Read	Reg	ister	Num reg	ber of isters	Chec	k code
Respond:							_
1	2	3	4	5	6	7	
01	03	02	FF	FF	B9	F4	

12.3 **Parameter setting**

12.3.1 Output voltage 【3000】

Write (set the output voltage to 200V) •

1	2	3	4	5	6	7	8	9	10	11	12	113
01	10	30	00	00	02	04	43	48	00	00	32	3C
	Write	Regis	ter	Numb regist	er of ers	Byte		Dat	а		CR	С

Respond:

nesponu:									
1	2	3	4	5	6	7	8		
01	10	30	00	00	02	4E	C8		
		Regis	ter	Nur	nber of		CRC		
				re	isters				
 Read 	d		_						
1	2	3	4	5	6	7	8		
01	03	30	00	00	02	СВ	OB		
	Read	Regis	ter	Nur reį	nber of isters		CRC		
Respond:									
1	2	3	4	5 6	7	8	9	1	

00 00 48 01 03 04 43 6F A1 CRC Byte Data

In which 43480000 stands for 200.0.

12.3.2 Resistance range register 【3006】

 wri 	te									
1	2	3	4	5	6	7	8	9	10	11
01	10	30	06	00	01	02	00	01	57	F5
	Write	Regis	ter	Numbe regist	er of ers	Byte	Data	а	CR	C

Respond:

nesponar								
1	2	3	4	5	6	7	8	
01	10	30	06	00	01	EE	C8	
		Regis	ter	Numbe	er of	CRO	2	

		registers								
• Read										
1	2	3	4	5	6	7	8			
01	03	30	06	00	01	6B	OB			
	read	regis	ter	Numbe	er of	CRC				
				regist	ers					

Respond:

neopenai						
1	2	3	4	5	6	7
01	03	02	00	01	79	84
		byte	dat	а	CI	RC

In which data values:

Date	Function
0000	measuring range 0
0001	measuring range 1
0002	measuring range 2
0003	measuring range 3
0004	measuring range 4
0005	measuring range 5
0006	measuring range 6

Resistor range mode register 【3008】

12.3.3

• write

1	2	3	4	5	6	7	8	9	10	11
01	10	30	08	00	01	02	00	00	97	1B
	write	regist	ter	Numbe regist	er of ers	byte	data	a	CRO	5

Respond:

1	2	3	4	5	6	7	8
01	10	30	08	00	01	8F	0B
		register		Number of		CRC	
				regist	ers		

 Read 	1						
1	2	3	4	5	6	7	8
01	03	30	08	00	01	0A	C8
	read	regist	register		er of ers	CRC	

Respond:

1	2	3	4	5	6	7
01	03	02	00	00	B8	44
		byte	data		CI	RC

In which data values:

data	Function	Explain				
0000	Automatic measuring					
	range					
0001	Hold range					
0002	Nominal range	Select the range according to the nominal value.				

12.3.4 Trigger once **[**5400**]**

The trigger state is not [internal], and the instrument is under normal test. Sending the trigger instruction is effective.

• wii	le	-	-		-	-		-		
1	2	3	4	5	6	7	8	9	10	11
01	10	54	00	00	01	02	00	01	72	55
	write	regis	ter	Numbe regist	er of ers	byte	data	a	CR	C
Respond	:									

		register		Number o	f registers	CF	RC
01	10	54	00	00	01	11	F9
1	2	3	4	5	6	7	8
nesponai							

Other instructions, according to the above example. See register overview for details.

13. Specification

This chapter describes the following information:

- Technical indicators
- General specifications
- Environmental requirements
- Dimensions

13.1 Technical Indicators

Accuracy is defined as meeting all of the following conditions. Temperature: $23^{\circ}C \pm 5^{\circ}C$ Humidity: 65% R.H. Zeroing: Open Correction Warm up time: >60 minutes A 1-year calibration cycle Sampling rate: Fast: about 55 times/sec. Medium speed: about 25 times/sec. Slow speed: about 3 times/sec. Test voltage accuracy: <10V $\pm 10\%$ >10V $\pm 1\%$

AT688

Insulation resistance:11 typical voltage <1M: ±5% >1M: ±1% ≥1G: ±3% ≥10G: ±5% ≥1T: ±10% M=10⁶,G=10⁹,T=10¹²

Range 3 5 L 2 4 6 Voltage 不考究 100k~1M 1M~10M 10M~100M 100M~1G 1G~10G 1V 10V 100k~1M 1M~10M 10M~100M 100M~1G 1G~10G 10G~100G 25V 250k~2.5M 2.5M~25M 25M~250M 250M~2.5G 2.5G~25G 25G~250G 50V 500M~5G 50G~500G 500k~5M 5M~50M 50M~500M 5G~50G 75V 750k~7.5M 7.5M~75M 75M~750M 750M~7.5G 7.5G~75G 75G~750G 100V 1M~10M 10M~100M 100M~1G 1G~10G 10G~100G 100G~1T 2.5M~12.5M 12.5M~125M 125M~1.25G 1.25G~12.5G 12.5G~125G 125G~1.25T 125V 5M~25M 25M~250M 250M~2.5G 2.5G~25G 25G~250G 250G~2.5T 250V 500V 10M~50M 50M~500M 500M~5G 5G~50G 50G~500G 500G~5T 750V 10M~75M 75M~750M 750M~7.5G 7.5G~75G 75G~750G 750G~7.5T 10M~100M 1000V 100M~1G 1G~10G 10G~100G 100G~1T 1T~10T

13.2 General Specification

Charging time: 999.9s Accuracy: ±0.5% Test speed: Manual range mode: Slow speed: 3 times / sec Medium speed: 25 times / sec Fast: 55 times / sec	
Maximum reading: 9999	
Range mode: Auto, Hold and Nominal	
Comparator: Output PASS, LOWER, UPPER.	
Beeper: Off, GD, NG.	
Trigger: Internal, external, manual, and remote triggering.	
Interface: Handler interface, RS232 interface	
Optional interface: RS485 and USB-232 interface	
Programming language: SCPI	
Accessibility: Keyboard lock	

13.3 Environment Requirements

Environment:	Indicator: Operation: Storage:	Temperature 18° C ~ 28° C Temperature 10° C ~ 40° C Temperature 0° C~50°C	Humidity ≤ 65% RH Humidity 10 ~ 80% RH Humidity 10~90% RH
Power supply:	198V ~ 252VAC	48.5Hz ~ 52.5Hz	
Fuse:	250V 1A Slow-E	Blow	
Power:	up to 30VA		
Weight:	about 5 kg.		

Supplied accessories: User manual, ATL680 test cable, AC power cord, Quality assurance certificate.

13.4 Dimensions

(Dimensions)

-AT688 User's Guide-English ©2005-2010 Applent Instruments Ltd.