用户手册 User's Guide

Rev. A 适用于 Rev. A1. 00 以上版本 AT51160

多路电阻测试仪

常州安柏精密仪器有限公司

Applent Instruments Ltd.

江苏省常州市武进区漕溪路9号14幢

电话: 0519-88805550

http://www.applent.com

销售服务电子邮件: <u>sales@applent.com</u> 技术支持电子邮件: <u>tech@applent.com</u> ©2005-2025 Applent Instruments Ltd.

图例说明

请参考细节。

安全须知

当你发现有以下不正常情形发生,请立即终止操作并断开电源线。立刻与安柏仪器销售部联系维修。 否则将会引起火灾或对操作者有潜在的触电危险。

- 仪器操作异常。
- 操作中仪器产生反常噪音、异味、烟或闪光。
- 操作过程中, 仪器产生高温或电击。
- 电源线、电源开关或电源插座损坏。
- 杂质或液体流入仪器。

免责声明

用户在开始使用仪器前请仔细阅读以下安全信息,对于用户由于未遵守下列条款而造成的人身安全和财产损失,安柏仪器将不承担任何责任。

为防止电击危险,请连接好电源地线。

不可在易燃易爆气体、蒸汽或多灰尘的环境下使用仪器。在此类环境使用任何电子设备,都是对人身安全的冒险。

非专业维护人员不可打开仪器外壳,以试图维修仪器。仪器在关机后一段时间内仍存在未释放干净的 电荷,这可能对人身造成电击危险。

如果仪器已经损害,其危险将不可预知。请断开电源线,不可再使用,也不要试图自行维修。

如果仪器工作不正常,其危险不可预知,请断开电源线,不可再使用,也不要试图自行维修。

超出本说明书指定的方式使用仪器,仪器所提供的保护措施将失效。

仪器启动测试后,测试端有高压,会对人身造成伤害,切勿用身体触碰测试线金属裸露部分。

目录

	目录		. 4
	插图目录.		. 7
	表格目录.		. 7
1.			
	1. 1	装箱清单	
	1. 2	电源要求	
	1. 3	操作环境	
		** ** * * * =	
•	1.4	清洗	
2.			
	2. 1	引言	
	2.2	主要功能	
	2. 2. 1	量程	. 9
	2. 2. 2	测量速度	. 9
	2. 2. 3	触发方式	. 0
	2. 2. 4	基本准确度	. 0
	2, 2, 5		
	2, 2, 6	比较器功能(分选功能)	
	2. 2. 7	系统设置	
	2. 2. 8	截图功能	
	2. 2. 8	(東国功能····································	
3.		ソルマア	
	3. 1	认识前面板	
	3. 1. 1	=	
	3. 2	认识后面板	
	3. 3	上电启动	
	3. 3. 1	开机	12
	3. 3. 2	预热	12
4.	<测量显示	:>页	.13
	4. 1	并行扫描工作状态	13
	4. 2	〈串行测量显示〉页	13
	4. 2. 1	通道设置	14
	4. 2. 2	测试【量程】	14
	4. 3	〈并行测量显示〉页	
	4. 3. 1		
	4. 3. 2	****	
5.			
5.		·····································	
	5. 1. 1		
		【通道】设置	
	5. 1. 2	测试【速度】	
	5. 1. 3	【接触检查】开关	
	5. 1. 4	【通道延时】	
	5. 1. 5	【自动翻页】	19
	5. 1. 6	【扫描】方式	20
	5. 1. 7	【刷新方式】	20
	5. 2	短路清零	20
6.	比较器设置	<u> </u>	.22
	6. 1		
	6, 1, 1	【比较器】开关	
	6. 1. 2	【讯响】设置	
	6. 1. 3	【下限】设置	
	6. 1. 4	【上限】设置	
	6. 2	比较器如何工作	
_	6.2.1	分选流程	
7.	系统配置		.26

	7.1	系统	配置页	
	7. 1. 1		更改系统语言【LANGUAGE】	
	7. 1. 2		【按键音】设置	27
	7. 1. 3		修改日期和时间	
	7. 1. 4		帐号设置	
	7. 1. 5		【远程控制】设置	
	7. 1. 6		【通讯协议】选择	
	7. 1. 7		【站号】选择	29
	7. 1. 8		【波特率】设置	29
	7. 1. 9		SCPI【指令握手】开关	30
	7. 1. 10)	SCPI 测量【结果发送】方式	
	7. 1. 11	l	SCPI【结束符】开关	30
	7. 1. 12	2	SCPI【错误码】显示	31
	7.2	系统	信息页	31
8.	U 盘存储			.32
	8. 1. 1		创建【新文件】	32
	8.1.2		【文件】选择	33
	8. 1. 3		【定时保存】	33
	8. 1. 4		U 盘数据存储机制	33
9.	远程通讯			.35
	9. 1	RS-2	32C	35
	9.1.1		RS232C 连接	35
	9.2	RS48	5 连接	36
	9.3	握手	协议	36
	9.4	SCPI	· 语言	37
	9. 5			
10.	SCPI	命令	参考	.38
	10.1		串解析	
	10. 1. 1		命令解析规则	
	10. 1. 2	_	符号约定和定义	
	10. 1. 3	_	命令树结构	
	10. 2		和参数	
	10. 2. 1		命令	
	10. 2. 2		参数	
	10. 2. 2		分隔符	
	10. 2. 4		错误码	
	10. 2. 4		参考	
			多名····································	
	10. 4		• • • • • • • • • • • • • • • • • • • •	
	10. 4. 1		DISP:LINE.	
			tion 子系统	
	10. 5		FUNCtion:RANGe 量程	
	10. 5. 1		FUNCtion: RANGe: MODE 量程方式	
	10. 5. 3 10. 5. 4		FUNCtion: RATE 测量速度	
		_	FUNCtion:CONTCHECK (CC) 接触检查	
	10. 5. 5		FUNCtion: CHDElay 通道延时	
	10. 5. 6		FUNCtion: SCAN 扫描方式	
	10. 5. 7		FUNCtion: REFMODE 刷新方式	
	10. 5. 8		FUNCtion: AUTOPAGE 自动翻页	
	10. 5. 9		FUNCtion: chenable (chen)	
			arator 子系统	
	10. 6. 1		COMParator[:STATe] 比较器状态	
	10. 6. 2		COMParator:BEEP 比较器讯响	
	10. 6. 3		COMParator:LOWer 比较器下限	
	10. 6. 4		COMParator:Upper 比较器上限	
			'em 子系统	
	10.7.1		SYSTem:LANGuage 系统语言	
	10.7.2		SYSTem:SYTLe 主题风格设置	
	10.7.3		SYSTem:TIME 系统时间设置	45
	10.7.4	1	SYSTem·KEVLock 或 SYSTem·KLOCk 键盘锁设置	45

	10.7.5	SYSTem:KEYBeep 按键音设置	45
	10.7.6	SYSTem:SHAKhand 通讯握手指令(数据头返回)	45
	10.7.7	SYSTem:RESult 测试结果发送	45
	10.7.8	SYSTem:SAVe4	46
	10.8	[RIGger 子系统	46
	10.8.1	TRIGger[:IMMediate]	
	10.8.2	TRIGger:SOURce	
	10.8.3	TRG	
		FETCh(READing) 子系统	
	10. 9. 1	READing?/Fetch? 获取测量数据	
		[DN? 子系统	
		PrtScn 子系统	
		ERRor 子系统4	
11.		us(RTU)通讯协议	
		数据格式4	
	11. 1. 1	指令帧4	
	11. 1. 2	CRC-16 计算方法	
	11. 1. 3	响应帧	
	11. 1. 4	无响应	
	11. 1. 5	错误码	
		功能码	
		寄存器	
		_{头口多} 个奇仔器	
		与八多个句仔品	
12.		日	
12.		高存器总览	
		获取测量数据	
	12. 2. 1		
	12. 2. 1		
		参数设置	
	12. 3. 1	量程方式【4000】【4009】	
	12. 3. 2	测试量程【4010】【4019】	
	12. 3. 3	速度【401A】	
	12. 3. 4	触发方式【401B】	
	12. 3. 5	接触检查开关【401C】	
	12. 3. 6	通道延时【401D】	
	12. 3. 7	自动翻页【401F】	60
	12.3.8	扫描方式【4020】	61
	12.3.9	通道设置【4021】	61
	12. 3. 10) 刷新方式【4022】	62
	12.4	比较器设置	62
	12.4.1	比较器状态【4100】	62
	12.4.2	比较器讯响【4101】	
	12.4.3	比较器极限值【4110-414E】	63
	12.5	系统功能	
	12. 5. 1	触发【5000】	
	12. 5. 2	键锁【5001】	
13.			
		技术指标 (
		一般规格	
	13. 3	外形尺寸	66

插图目录

	3−1 前面板	
冬	3-2 后面板	. 12
冬	4-1 〈串行测量〉页	. 13
图	4-2 〈并行测量〉页	. 15
冬	5-1〈设置〉页	. 17
	5-2 测试线全部接触不良	
	5-3 HIGH (+) 端测试线接触不良	
	5-4 LOW (-) 端测试线接触不良	
	5-5 短路清 0	
	6-1 〈比较器设置〉页	
	6-2 分选流程	
	7-1 〈系统配置〉页	
	7-2 〈系统信息〉页	
	8-1 U盘记录—创建文件	
	8-2 文件选择	
	8-3 U盘记录一定时保存	
	9-1 后面板上 RS-232 接口	
	9-2 LAN	
	10-1 命令树结构	
	10-2 DISPlay 子系统树	
冬	10-3 FUNCtion 子系统树	. 41
冬	10-4 COMParator 子系统树	. 43
图	10-5 SYSTem 子系统树	. 44
冬	10-6 TRIGger 子系统树	. 46
冬	10-7 FETCh? 子系统树	. 47
冬	10-8 IDN? 子系统树	. 48
冬	10-9 PrtScn 子系统树	. 48
	11-1 Modbus 指令帧	
	11-2 Modbus 附加 CRC-16 值	
	11-3 正常响应帧	
	11-4 异常响应帧	
	11-5 读出多个寄存器 (0x03)	
	11-6 读出多个寄存器(0x03)响应帧	
	11-7 写入多个寄存器 (0x10)	
	11-8 写入多个寄存器 (0x10) 响应帧	
	11-9 回波测试(0x08)	
窎	11-9 回収例队(0x00)	. ၁ა
	t. tt. → →	
	表格目录	
表	3-1 前面板功能描述	. 11
表	4-1 测试量程说明	. 14
表	9-1 常用的 RS-232 信号	. 35
表	9-2 RS-232 标准的最小子集	. 35
	10-1 倍率缩写	
	11-1 指令帧说明	
	11-2 异常响应帧说明	
	11-3 错误码说明	
	11-3 钼铁钨优势	
-	11-4 切能码	
	11-6 写入多个寄存器	
衣	12-1 寄存器总览	. 55

1. 概述

感谢您购买我公司的产品!使用前请仔细阅读本章。在本章您将了解到以下内容:

- 主要功能装箱清单
- 电源要求
- 操作环境
- 清洗

1.1 装箱清单

正式使用仪器前请首先:

- 1. 检查产品的外观是否有破损、刮伤等不良现象;
- 2. 对照仪器装箱清单检查仪器附件是否有遗失。

如有破损或附件不足,请立即与安柏仪器销售部或销售商联系。

1.2 电源要求

AT51160 只能在以下电源条件使用: 电压: 100~240VAC (1±10%) 频率: 50Hz/60Hz (1±10%)

I

警告:

电击危险, 请连接好电源地线

如果用户更换了电源线, 请确保该电源线的地可靠连接。

1.3 操作环境

AT51160 必须在下列环境条件下使用: 温度: 0℃~55℃, 湿度: 在 23℃ 小于 70%RH

1.4 清洗

为了防止电击危险,在清洗前请将电源线拔下。 请使用干净布蘸少许清水对外壳和面板进行清洗。 不可清洁仪器内部。

警告:

用溶剂 (酒精或汽油等) 对仪器进行清洗。

2. 概述

本章您将了解到以下内容:

- 引言
- 主要

2.1 引言

感谢您购买 AT51160 多路电阻测试仪。

AT51160 多路电阻测试仪,采用高性能 ARM 微处理器控制的全自动实时检测的微型台式 仪器。

仪器可同时对 160 通道(10 个模块,每个模块 16 通道,可定制模块个数)电阻进行测量,并且同时显示在屏幕上。每个通道都具有 0.05%的准确度和 $1u\,\Omega^2M\Omega$ 的测量范围。具有 22000 读数。

仪器可以对 160 路不同阻值的电阻进行混合测试,每通道都有独立的比较器设置。

仪器标配 RS-232 、RS-485、LAN 接口。

仪器支持计算机远程控制指令兼容 SCPI (Standard Command for Programmable Instrument 可程控仪器标准命令集), 高效完成远程控制和数据采集功能。

同时支持 Modbus RTU 通讯协议,方便与 PLC 等设备通讯。

参考: 技术规格参见规格一章。

2.2 主要功能

2.2.1 量程

使用 8 量程测试,可以测试 $1u\Omega^{2}$ 200k Ω 电阻。

量程自动、手动和标称。

量程标称(安柏新名词定义): 仪器会根据标称值自动选择最佳量程。

2.2.2 测量速度

仪器分三档速度: 慢速、中速和快速。

并行扫描完全部通道所需最快时间

慢速: 3.5秒 中速: 1.9秒 快速: 1.1秒

2.2.3 触发方式

手动触发:使用启动按键触发一次扫描测量,完成后停止并放电。远程触发:使用远程指令触发一次扫描测量,完成后停止并放电。

2.2.4 基本准确度

慢速: 0.05%

中速、快速和高速: 0.2%

参考:详细的准确度请参考技术规格一章。

2.2.5 校准功能

全量程短路清"0":消除引线电阻的影响。

2.2.6 比较器功能(分选功能)

AT51160 具有分选功能。 测量结果包括 HI, LO 和 OK。

2.2.7 系统设置

1. 键盘锁定功能

使用方法:点击底部菜单栏【键盘锁】打开或关闭键盘锁

2. 管理员和用户帐户,可对管理员设置密码

2.2.8 截图功能

AT51160 提供截图功能,方便用户的使用。

操作步骤:

1. 插入 U 盘

2. 使用 SCPI 指令截图,通讯指令: PrtScn

2.2.9 接口

RS-232 接口:

支持最大 115200bps 的波特率,兼容 SCPI 协议和 Modbus RTU 协议。

USB-232 接口:

在计算机上虚拟出一个串口,兼容 SCPI 协议和 Modbus RTU 协议。

RS-485 接口:

支持最大 115200bps 的波特率, 使用 Modbus RTU 通讯协议。

LAN 接口:

支持接入局域网,兼容 SCPI 协议

3. 概述

本章您将了解到以下内容:

- 认识前面板——包括按键和测试端子的介绍。
- 后面板——介绍电源和接口信息。
- 上电启动——包括上电自检过程、仪器缺省值和仪器预热时间

3.1 认识前面板

3.1.1 前面板描述

图 3-1 前面板

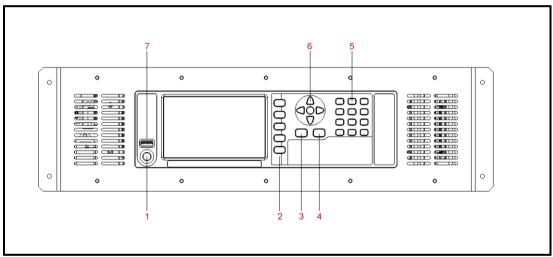
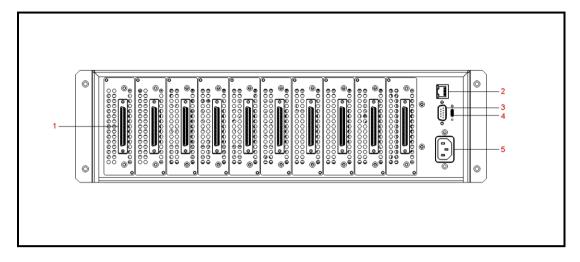



表 3-1 前面板功能描述

序号	功能
1	电源开关: 橙色指示灯代表关机状态,绿色指示灯代表开机
2	侧功能键
3	主功能键: 测量
4	主功能键: 设置
5	数字键盘
6	光标按键
7	USB 主机接口: 用于连接 USB 磁盘

3.2 认识后面板

图 3-2 后面板

- 1. 测试端口
- 2. LAN 接口
- 3. RS-232/RS-485 接口
- 4. USB 通讯接口
- 5. 电压插座 AC 100V-240V~, 50/60Hz, 20VA MAX

警告:

仪器为正电压输出,+端有电压输出,请勿触碰,谨防触电危险。

3.3 上电启动

3.3.1 开机

面板左下方标识"●"的按键为电源开关。

橙色指示灯: 关机状态 绿指示灯: 开机状态

3.3.2 预热

预热时间:为了达到指定的准确度,仪器需要预热至少15分钟。

4. 〈测量显示〉页

本章您将了解到以下内容:

- 并行扫描工作状态
- 测量显示页面说明
- 模块设置
- 通道设置
- 触发方式
- 测试量程

4.1 并行扫描工作状态

AT51160 全模块并行,每个模块又有 16 通道串行扫描。共 160 通道,仅需扫描 16 次便可完成一个测量周期。

在并行工作模式下,仪器的所有模块同时启动测量,每个模块从 1 通道扫描到 16 通道。每个模块可独立设置量程,以适应不同的被测对象需求。其他参数(如测量速度、测试时间等)在所有通道中统一设置。

特点:

- 1. 高效性: 并行测量模式显著提高了测试效率,适合大批量被测件同时测试的应用场景。
- 2. 独立配置:每个模块的测试量程可根据被测件的要求单独设置,满足多样化测试需求。
- 3. 独立判断:每个通道独立判断测试结果。

注意:

i

- 安全操作:在测试前,确保所有连接正确,避免因接触不良或连接错误导致测试失败或安全 隐患。
- 参数设置:根据被测件的特性,合理设置各通道的测试量程,统一设置其他参数,确保测试结果的准确性。

4.2 〈串行测量显示〉页

按【Meas】键或侧边栏按【测量】键进入【测量显示】页(根据刷新方式自动选择)。

图 4-1 <串行测量>页

序号	功能
1	模块号显示 (01-10)
2	通道设置 (01-16)
3	量程设置
4	触发设置
5	功能键:设置
6	功能键: 系统
7	功能键: 比较器
8	功能键: 上一模块
9	功能键:下一模块
10	键盘锁功能
11	截屏功能
12	比较器显示
13	电阻值显示

4.2.1 通道设置

仪器共有16个通道,可以使用功能键选择扫描方式。

- 设置通道的步骤:
- 1 进入〈扫描测量〉页
- **2** 使用光标键选择【01】-【16】字段;
- **3** 使用功能键选择使用的通道。

功能键	功能
扫描	设置为扫描测试模式
单路	只对当前通道进行测试
增加+	单路测试下更改当前测试通道
减小-	单路测试下更改当前测试通道

4.2.2 测试【量程】

AT51160 具有 8 个量程, 每个量程的变动范围如下:

量程号	量程	量程范围
0	20m Ω	0.0000 m Ω $^{\sim}20.000$ m Ω
1	200m Ω	20. 000 m Ω $^{\sim}200$. 00 m Ω
2	2 Ω	200. 00 Ω ~2. 0000 Ω
3	20 Ω	2. $0000 \Omega^{\sim} 20.000 \Omega$
4	200 Ω	20. 000 Ω ~200. 00 Ω
5	2k Ω	200. 00 Ω ~2. 0000k Ω
6	20k Ω	2. 0000k Ω ~20. 000k Ω
7	200k Ω	20. 000k Ω ~200. 00k Ω

量程方式有2种:

表 4-1 测试量程说明

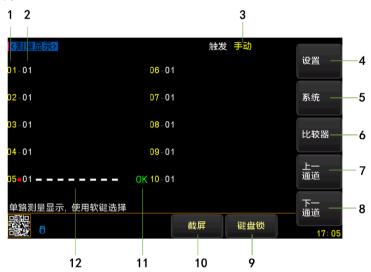
量程方式	描述	优点	缺点
手动	仪器将始终使用用户指定的量程进	测量速度达到最快。	用户需要参与量程的
	行测试		选择
标称	标称量程方式: 仪器将根据比较器	分选测试的最佳方式。	只适合分选测试。
	下限选择最佳量程	速度达到最快。	

- 设置量程的步骤:
- 1 按【Meas】键进入测量页面或【Setup】键进入设置页面;
- 2 使用光标键选择【量程】字段;
- **3** 使用功能键选择量程手动或选择量程

功能键 功能

手动	仪器被锁定在当前量程上
标称	仪器将根据标称值选择最佳量程
增加+	增加量程号,同时量程更改为锁定
减小-	减小量程号,同时量程更改为锁定

i


注意

用于分选的用户,请选择标称量程方式。

4.3 〈并行测量显示〉页

在〈设置页面〉中更改【刷新方式】为并行,再按【Meas】键或侧边栏按【测量】键进入【测量显示】页(根据刷新方式自动选择)。

图 4-2 <并行测量>页

序号	功能
1	模块号显示 (01-10)
2	通道设置 (01-16)
3	触发设置
4	功能键: 设置
5	功能键: 系统
6	功能键: 比较器
7	功能键:上一通道
8	功能键:下一通道
9	键盘锁功能
10	截屏功能
11	比较器显示
12	电阻值显示

4.3.1 模块设置

仪器共有 10 个模块,可以使用功能键使能/失能对应的模块,仪器将根据打开的模块使能对应的测试结果显示区。

设置模块的步骤:

- 1 进入〈扫描测量〉页
- **2** 使用光标键选择【01】-【10】字段;
- 3 使用功能键选择使用的通道。

功能键	功能
开/关	使能或失能该通道
单路	只使能选中的通道
全部打开	打开仪器全部通道
一键设置	设置当前所有使能通道的电压和量程与选中通道的电压和量程一样

【触发】方式 4.3.2

仪器具有2种触发方式:

触发方式	描述
手动	也称连续测试,触发信号由仪器内部按照固有周期连续不断的进行测试
总线	使用上位机指令进行触发测试。 远程触发仪器在接收到触发指令后,执行一次测量周期,其它时间处于等待状态。

- 设置触发方式的步骤:
- 按【Meas】键进入测量主页面,或按【Setup】键进入设置主页面; 1
- 使用光标键选择【触发】字段; 2
- 使用功能键选择触发方式。 3

功能键	功能
手动	手动触发
总线	远程触发

5. 〈设置〉页面

本章您将了解到以下内容:

- 接触检查
- 测试速度
- 通道延时
- 自动翻页
- 扫描
- 刷新方式

5.1 测量设置

〈设置〉页里,仪器不进行测量。

图 5-1 <设置>页

5.1.1 【通道】设置

- 设置通道的步骤:
- 1 进入〈单路测量〉页
- **2** 使用光标键选择【01】-【10】字段;
- 3 使用功能键选择使用的通道。

功能键	功能
开/关	使能或失能该通道
单路	只使能选中的通道
全部打开	打开仪器全部通道
一键设置	设置当前所有使能通道的电压和量程与选中通道的电压和量程一样

5.1.2 测试【速度】

并行扫描完全部通道所需最快时间

慢速: 3.5秒 中速: 1.9秒 快速: 1.1秒

- 设置测量速度的步骤:
- 进入〈单路测量〉页或〈设置〉页
- 2 使用光标键选择【速度】字段;
- 3 使用功能键选择

功能键	功能
慢速	
中速	
快速	

5.1.3 【接触检查】开关

由于被测绝缘电阻值会超出仪器测量范围,使得测量值显示为上超溢出,这样将无法区分是被测件本身绝缘电阻值高而产生的溢出,还是被测件未接触好而造成测量值溢出的情况,从而造成误判。 为了解决这个问题,仪器可以使用额外两个端子来分别检测 HIGH 和 LOW 两端是否接触不良。

在充电和测量时,都会首先进行接触检查测试。接触检查会在每个测量周期开始时和结束时分别检测一次,一旦其中一次发生接触不良,当前测量将终止并返回到放电状态。

仪器每次测量都会首先进行接触不良检查。

i

接触检查开关打开后,测量时间会加长。请参考测量速度一节。

- 打开接触检查:
- 1 在放电状态下按【Setup】键进入设置页面;
- 2 使用光标键选择【接触检查】字段;
- 3 使用功能键进行选择

功能键	功能
关闭	
打开	

接触检查打开后,测量时会首先进行测试线接触不良检测,一旦有任何一端断开将显示开路,同时进入放电状态。

1. HIGH/LOW 全部开路时,显示为CC.HL

图 5-2 测试线全部接触不良

此时需要检查 HIGH(+) 和 LOW(-)的测试线。

2. HIGH(+) 端开路时,显示为CC.H

图 5-3 HIGH (+) 端测试线接触不良

此时需要检查 HIGH(+) 端测试线。 3. LOW (-) 端开路时,显示为CC.L

图 5-4 LOW (-) 端测试线接触不良

此时需要检查 LOW (-) 端测试线。

【通道延时】 5. 1. 4

i

在高量程测量时,请务必增加通道延时时间,参考延时时间如下:

量程 4: 50ms

量程 5: 50ms

量程 6: 250ms

量程 7: 500ms

可根据实际情况适当调整。

通道延时最小值: 10ms, 最大值 2s

- 设置通道延时定时器的步骤:
- 按【Setup】键进入设置页面; 1
- 使用光标键选择【通道延时】字段; 2
- 可以直接数字键盘输入希望的测量时间。 3

或使用功能键讲行选择:

3/K/13/11/2011:	
功能键	功能
10ms	
100 ms	
500 ms	
1s	
2s	

5.1.5 【自动翻页】

由于仪器通道数量较多,并采用 10 个模块并行测试的方式,因此只需进行 16 次测试,每次从通道 1 扫描至通道 16, 即可完成对所有通道的全面检测。

- 设置自动翻页的步骤:
- 按【Setup】键进入设置页面; 1

- 2 使用光标键选择【自动翻页】字段;
- 3 使用功能键进行选择:

功能键	功能
关闭	
打开	串行刷新页面: 自动切换下一个模块
	并行刷新页面: 自动切换下一个通道

5.1.6 【扫描】方式

用户可以设定循环扫描或是定通道测量。该设置同样可以在<测量显示>页面的通道号里进行设置。

- 设置扫描方式的步骤:
- ★【Setup】键进入设置页面;
- 2 使用光标键选择【扫描】字段;
- 3 使用功能键进行选择:

功能键	功能
扫描	多通道循环测试
单路	当前通道单独测试
增加+	更换单路测试的通道号
减小-	更换单路测试的通道号

5.1.7 【刷新方式】

仪器是 10 个模块并行运行,每个模块 16 通道,因此只需进行 16 次测试,全部通道就能完成测试。此功能只是设置刷新的方式不一样! 搭配【自动翻页】功能使用。

- 设置刷新方式的步骤:
- 1 按【Setup】键进入设置页面;
- 2 使用光标键选择【刷新方式】字段;
- **3** 使用功能键进行选择:

功能键	功能
串行	
并行	

5.2 短路清零

图 5-5 短路清 0

短路清0步骤:

- 打开<设置>页面
- 使用光标键选择【通道】字段
- 点击侧边栏【短路清零】按钮
- 输入想要清零的通道号
- 完成短路清零

i 注意: 短路清零时需要两个夹子的 DRIVE+和 DRIVE-相接触, SENSE+和 SENSE-想接触。

6. 比较器设置

本章您将了解到以下内容:

- 比较器设置
- 比较器如何工作

6.1 比较器设置

本仪器内置比较器功能,按【Meas】键 或【Setup】键,再按右侧【比较器设置】功能键,进入<比较器设置>页面。

用户可通过简单的设置步骤对合格、不合格等测试结果进行分选并关联讯响提示。启用比较器后,测试过程中如有任何一条通道达到讯响条件,即触发提示音。

在〈比较器〉页,您可以设置以下内容:

- 比较器开关 打开/关闭比较器
- 讯响设置 OK/NG/关闭讯响功能
- 上下限设置

图 6-1 < 比较器设置>页

6.1.1 【比较器】开关

通讯指令: COMParator[:STATe] {OFF,ON}

- 打开或关闭比较器的步骤:
- 1 按【Meas】或【Setup】键进入相应页面;
- 2 按【比较器设置】键进入<比较器设置>页;
- 3 使用光标键选择【比较器】字段;
- 4 使用功能键选择

功能键	功能
关闭	关闭比较器

1	+r T. L/ #六 明	
打工		
1 1 1 / 1	1 3.1 /1 LL+X 46	

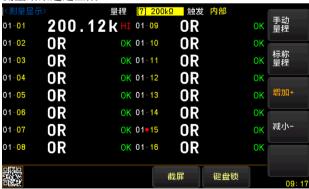
6.1.2 【讯响】设置

通讯指令: COMParator:BEEP {OFF, OK, NG}

仪器可以设置合格讯响或不合格讯响。

- 讯响设置:
- 土 进入〈比较器设置〉页面
- 2 使用光标键选择【讯响】字段;
- 3 使用功能键选择

功能键	功能
关闭	讯响关闭
合格	合格讯响
不合格	不合格选项


- 讯响工作流程
- 1. 启用比较器。启用后, 仪器开始对测试结果进行分选判定。
- 2. 设置讯响模式,根据需要设置讯响提示类型。
- 3. 切换到测量页面,完成设置后,切换回测量页面并开始测试。测试过程中: 如果任意一个启用的通道满足讯响条件(合格或不合格,具体取决于设置),仪器将立即发出提示音; 若多个通道同时满足讯响条件,提示音仅触发一次,且不影响其他通道的测量。

设置模块 1 的 1 通道的比较器下限为 1.000 Ω ,上限为 10.00k Ω ,以下是三种测量结果图:

测量结果在比较器范围内

测量结果超过上限

测量结果低于下限

i

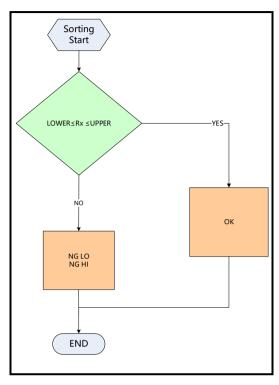
讯响模式需根据实际需求选择。

6.1.3 【下限】设置

- 输入下限值
- 1 进入〈比较器〉页面
- 2 使用光标键选择【下限】字段;
- 3 输入数据,侧边栏功能键选择单位,例如: $10 M\Omega$

6.1.4 【上限】设置

比较器上限允许设置为无穷大 (∞), 此时上限将不参与运算和比较。


- 设置和输入上限值
- 1 进入〈比较器〉页面
- 2 使用光标键选择【上限】字段;
- **3a** 输入数据,侧边栏功能键选择单位,例如: $1 G\Omega$
- **3b** 或者侧边栏功能选择为∞ (无穷大),将上限关闭。

一旦比较器上限设置为∞ (无穷大), 仪器比较器将只判断下限,超过下限将显示合格 (OK),低于下限将显示 (NG LO)。

6.2 比较器如何工作

6.2.1 分选流程

图 6-2 分选流程

7. 系统配置

本章您将了解到以下内容:

- 系统配置页
- 系统信息页

7.1 系统配置页

按侧边栏【系统】进入<系统配置>页。

系统配置页包括以下设置:

- LNGUAGE 中文和英文选择
- 【按键音】设置 打开/关闭按键音
- 【日期/时间】设置
- 【帐号】设置 管理员/用户帐号密码设置
- 【远程控制】设置 仪器支持 RS232/RS485/USB 接口
- 【波特率】设置
- 【通讯协议】选择 SCPI/MODBUS 协议选择
- 【站号】选择 多机通讯站号设置
- 通讯【指令握手】开关 SCPI 打开指令握手
- 【结果发送】方式 自动/手动发送测量结果
- SCPI 【结束符】设置 SCPI 结束符设置

系统配置页的所有设置将自动保存在系统里,在下次开机时自动载入。

图 7-1 <系统配置>页

7.1.1 更改系统语言【LANGUAGE】

通讯指令: SYSTem:LANGuage {ENGLISH, CHINESE, EN, CN}

仪器支持中文和英文两种语言。

- 更改语言的步骤
- 1 进入〈系统配置〉页面
- **2** 使用光标键选择【LANGUAGE】。
- 3 使用功能键选择语言:

功能键 功能

中文[CHS]	简体中文	
ENGLISH	英语	

7.1.2 【按键音】设置

仪器的按键音允许关闭。

■ 设置按键音

第1步 进入〈系统配置〉页面

第2步 使用光标键选择【按键音】字段;

第3步 使用功能键选择

b 41 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
功能键	功能
关闭	
打开	

7.1.3 修改日期和时间

通讯指令: SYSTem:dt <YYYYMMDDHHmmss>

仪器使用 24 小时时钟。

- 更改日期:
- 1 进入〈系统配置〉页面
- 2 使用光标键选择【日期】字段。
- 3 使用功能键设置日期:

功能键	功能
月+	+1 月
月-	-1月
日+	+1 日
日-	-1 日
年+	+1 年
年-	-1 年

- 更改时钟:
- 1 进入〈系统配置〉页面
- 2 使用光标键选择【时钟】字段。
- 3 使用功能键设置时钟:

功能键	功能
时+	+1 小时
时-	-1 小时
分+	+1 分钟
分-	-1 分钟
秒+	+1 秒
秒-	-1 秒

7.1.4 帐号设置

仪器有两种用户模式供选择:

- 管理员 除了【系统服务】页外,其它功能都对管理员开放,并且管理员设置的参数在延时 5 秒后保存在系统存储器中,便于下次开机后加载。
- 用户 除了【系统服务】、【文件】页外,其它功能用户可以操作,用户修改的数据在下次开机 后恢复为管理员设置的值。
- 更改帐号:
- 1 进入〈系统配置〉页面
- **2** 使用光标键选择【帐号】字段。
- **3** 使用功能键更改:

功能键	功能
管理员	除了【系统服务】页外的所有功能都开放
	如果忘记密码,请致电我公司销售部。
用户	除了【系统服务】页和【文件】页的功能可以操作,设置的数据不允许保存。

- 管理员密码设置:
- 进入〈系统配置〉页面 1
- 使用光标键选择【帐号】字段。 2
- 使用功能键选择: 3

功能键	功能
更改密码	输入最多9位的数字密码,密码只包括数字和符号。
删除密码	管理员将不受密码保护

7. 1. 5 【远程控制】设置

仪器支持3种远程控制接口: RS232、RS485和LAN接口。 三种接口都可以运行 SCPI 和 Modbus (RTU) 协议。

- 选择远程控制接口:
- 进入〈系统配置〉页面 1
- 使用光标键选择【远程控制】字段; 2
- 使用功能键选择 3

功能键	功能
RS232	RS232 使用后面板上的 DB9 接口进行通讯,使用其中 3 根引脚: P2: TxD P3: RxD P5: GND
RS485	RS485 使用后面板上的 DB9 接口进行通讯,使用其中 2 根引脚: P8: A(+) P9: B(-)
LAN	

7.1.6 【通讯协议】选择

仪器支持 2 种通讯协议: SCPI 和 Modbus (RTU) 协议,通常与计算机通讯使用 SCPI 比较方便,与 PLC 等工控设备通讯, Modbus 协议更易于使用, 支持多机通讯。

- 选择通讯协议:
- 进入〈系统配置〉页面
- 使用光标键选择【通讯协议】字段; 2
- 使用功能键选择 3

功能键	功能
SCPI	
Modbus	

7.1.7 【站号】选择

多机通讯必须设置站号。

如果使用 Modbus (RTU) 协议,务必设置好本机的站号地址。

此站号同样也可以用于 SCPI 通讯协议进行多机通讯。

使用安柏仪器扩展的 SCPI 通讯协议,也可以进行多机通讯。

在每行指令起始,增加 addr #;:子系统即可选择从机。例如: addr 02;:fetch?Δ代表从站号 2 的从机获取数据。

- 选择 RS485 站号:
- ▲ 进入〈系统配置〉页面
- 2 使用光标键选择【站号】字段;
- 3 使用功能键选择

功能键	功能
00 广播	仪器将只接收指令,而不会返回任何数据。
01	
02	
03	
04	
05	
06	
07	
08	
09	
10	
11	
12	
13	
14	
15	

在 Modbus 协议下,为了方便多台相同仪器同时操作,仪器允许使用站号 00 来进行广播通讯,使用站号 00 进行通讯,仪器只接收指令,而不会返回响应码。

7.1.8 【波特率】设置

仪器内置 RS-232 接口, 仪器在 RS-232 接口收到有正确的指令后, 就立即按设定的波特率与主机通讯, 同时键盘被锁定。

为了能正确通讯,请确认波特率设置正确,上位机与仪器的波特率不同将无法正确通讯。 仪器 RS-232/RS-485/USB 配置如下:

- 数据位: 8位
- 停止位: 1位
- 奇偶校验: 无
- 波特率:可配置

设置波特率:

- ▲ 进入〈系统配置〉页面
- 2 使用光标键选择【波特率】字段;
- 3 使用功能键选择

功能键	功能
9600	
19200	Modbus 与主机通讯,建议使用此波特率
38400	
57600	
115200	SCPI 与计算机主机通讯,建议您使用此高速波特率。

7.1.9 SCPI【指令握手】开关

此功能仅对 SCPI 协议是有效。

仪器支持 SCPI 指令握手。

SCPI Command: SYSTem: SHAKhand {ON,OFF,0,1}

SCPI Query Command: SYSTem: SHAKhand?

指令握手打开后,主机发送给仪器的所有指令都将原样返回给主机,之后才返回数据。

指令握手关闭后, 主机发送给仪器的指令将被立即处理。

■ 设置指令握手的步骤:

进入〈系统配置〉页面 1

使用光标键选择【指令握手】字段; 2

使用功能键选择 3

功能键	功能
关	不使用指令握手。除非特殊要求,否则请将指令握手设定为关。
开	

7.1.10 SCPI 测量【结果发送】方式

此功能仅对 SCPI 协议是有效。

仪器支持自动往主机发送数据的功能。在每次测试完成后数据将自动发送给主机,而不需要主机发送 FETCH? 指令。

仪器每测试完成后将测试结果和比较器结果发送给主机,格式如下: +1. 000E+09, □100, TEST, 0K□□□

其中,

- 参数 1: 电阻测量结果(其中,+1.000e+20 表示上超溢出,-1.000e+20 表示下超溢出)
- 参数 2: 电压输出结果 (共占四位,不足四位左侧用空格补齐)
- 参数 3: 测试状态 (共有 5 种状态: SHT、CHAR、TEST、DICH、OFF)
- 参数 4: 异常状态与比较器结果(异常状态有两种: SHORT、OPEN,其中开路状态有: CC HL, CC H, CC L; 比较器结果有 OK、LO、HI)
 - a) OK 代表合格
 - b) LO 代表不合格 下超
 - c) HI 代表不合格 上超

如果将结果发送设置为 AUTO, 测量数据需要根据【测量定时】开启与否进行返回:

当测量定时设置为关闭时, 仪器每测量一次数据将返回一次;

当测量定时设置了时间后,仅在测量结束时返回一次。

■ 设置【结果发送】的步骤:

- 进入〈系统配置〉页面
- 使用光标键选择【结果发送】字段: 2
- 使用功能键选择 3

功能键	功能
FETCH	只能使用指令 FETCH? 获取所有测量数据
自动	每次测试完成后自动发送给主机

7.1.11 SCPI【结束符】开关

此功能仅对 SCPI 协议是有效。

仪器支持 SCPI 指令结束符设置。

上位机发送指令时可以使用,也可以不使用结束符,仪器都可以接收并解析。

仪器向上位机发送响应结果时,末尾始终会发送设定的结束符。

结束符: 仪器与主机之间通讯指令中必须有结束符, 便于互相识别指令结束。

仪器支持3种结束符,

Vm VN o Hav	-11.			
结束符	ASCII 名称	ASCII 十六进制	字节数	说明
LF (0x0A)	换行符	0x0A	1 字节	仪器默认
CR (OxOD)	回车符	0x0D	1 字节	

CR+LF	回车+换行符	第 1 字节 0x0D 第 2 字节 0x0A	2字节	
NUL(0x00)	空字符	0x00	1 字节	

设置结束符的步骤:

- ▲ 进入〈系统配置〉页面
- 2 使用光标键选择【结束符】字段;
- 3 使用功能键选择

功能键	功能
LF (0x0A)	LF: 换行符, ASCII 码: 0x0A
CR (0x0D)	CR: 回车符,ASCII 码: 0x0D
CR+LF	
NUL(0x00)	NUL: 空字符,ASCII 码: 0x00

7.1.12 SCPI【错误码】显示

此功能仅对 SCPI 协议是有效。

SCPI Command: SYSTem:CODE {ON,OFF,0,1}

SCPI Query Command: SYSTem:CODE?

错误码打开后, 仪器会在接受到指令后将返回错误码。

如果是查询指令,只有指令错误才会返回错误码。

错误码关闭后,主机可以通过发送指令 ERR?查询上一次指令执行产生错误码。

■ 错误码设置的步骤:

- 1 进入〈系统配置〉页面
- 2 使用光标键选择【错误码】字段;
- 3 使用功能键选择

功能键	功能
关	错误码不自动返回。
开	错误码在执行完单行指令后返回执行错误码。

7.2 系统信息页

在侧边任务栏里按【系统】键,进入〈系统配置〉页,按功能键选择【信息】。

系统信息页没有用户可配置的选项。

图 7-2 <系统信息>页

8. U 盘存储

本章您将了解到以下内容:

- 定时保存—在测量定时器设置为关闭时,数据将定时保存在文件中
- 自动启用—插入 U 盘时,自动打开文件,并进行存储
- 文件一创建新文件
- U 盘存储—数据存储机制

8.1.1 创建【新文件】

创建【新文件】字段,用来在 U 盘中创建一个新文件,文件名由用户自定义。文件格式固定为 CSV 格式。

图 8-1 U 盘记录—创建文件

- 创建【新文件】的步骤:
- ▲ 进入<U 盘存储>页面
- 2 使用光标键选择【文件】字段
- 3 使用功能键选择

功能键	功能
创建文件	将弹出字符键盘,输入自定义文件名。
	输入完成后,按功能键[确定] 后将创建一个新文件,文件名将显示在列表中。

i

最多可新建1000个文件,即时删除不需要的文件。

8.1.2 【文件】选择

图 8-2 文件选择

- 1 进入<U 盘存储>页面
- **2** 使用[下一页] 或 [上一页] 功能键选择【文件 0】[~]【文件 9】页面 或【文件 10】[~]【文件 19】页面
- **3** 使用光标键选择【文件 0】[~]【文件 19】字段;
- 4 使用功能键选择

功能键	功能
打开	打开此文件并用于数据存储
关闭	关闭此文件
删除	删除此文件,存储的数据将一并清除,删除后此文件将无法恢复。

8.1.3 【定时保存】

图 8-3 U 盘记录—定时保存

- 设置【定时保存】的步骤:
- ▲ 进入〈U 盘存储〉页面
- 使用光标键选择【定时保存】字段
- **3** 使用功能键选择【关闭】,或直接输入定时时间,定时保存的最小定时间隔为 1s。

功能键	功能
关闭	

8.1.4 U盘数据存储机制

- (1) 首先选择磁盘,机身内存还是 U 盘
- (2) 创建新记录
- (3) 打开记录
- (4) 自动保存打开,测试过后自动往磁盘里面存储

自动保存关闭,需要手动点击【数据保存】按钮存储。

9. 远程通讯

本章您将了解到以下内容:

- 介绍 RS-232 接口
- RS-232 连接。
- 选择波特率。
- 软件协议。

仪器使用 RS-232 接口(标准配置)与计算机进行通信,完成所有仪器功能。通过标准 SCPI 命令,用户还可以方便地编制各种适合自身的采集系统。

9. 1 RS-232C

RS-232 是目前广泛采用的串行通讯标准,也称为异步串行通讯标准,用于实现计算机与计算机之间、计算机与外设之间的数据通讯。RS 为 "Recommended Standard"(推荐标准)的英文缩写,232 是标准号,该标准是美国电子工业协会(EIA)1969 年正式公布的标准,它规定每次一位地经一条数据线传送。大多数串行口的配置通常不是严格基于 RS-232 标准:在每个端口使用 25 芯连接器(现在的计算机基本使用 9 芯连接器)的。最常用的 RS-232 信号如表所示:

表 9-1 常用的 RS-232 信号

信号	符号	25 芯连接器引脚号	9 芯连接器引脚号
请求发送	RTS	4	7
清除发送	CTS	5	8
数据设置准备	DSR	6	6
数据载波探测	DCD	8	1
数据终端准备	DTR	20	4
发送数据	TXD	2	3
接收数据	RXD	3	2
接地	GND	7	5
请求发送	RTS	4	7

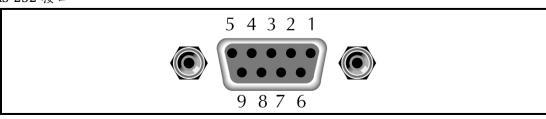
除此之外, RS232 还有有最小子集, 这也是仪器所采用的连接方式。

表 9-2 RS-232 标准的最小子集

信号	符号	9 芯连接器引脚号
发送数据	TXD	2
接收数据	RXD	3
接地	GND	5

9.1.1 RS232C 连接

RS-232 串行接口可以和控制器(例如:个人电脑或工控机)的串行接口通过直通 DB-9 电缆进行互连。



注意: 仪器无法使用 null modem 电缆。 您可以直接制作或向安柏仪器格式购买 9 芯**直通**电缆。

用户自制的3线电缆应注意:

•使用 PC 机自带的 DB9 端口,可能要将计算机端的 DB-9 连接器(针)的 4-6,7-8 短接

图 9-1 后面板上 RS-232 接口

为避免电气冲击,在插拔连接器时,请关闭仪器电源。

■ 仪器默认的通信设置:

传输方式: 含起始位和停止位的全双工异步通讯

数据位: 8位 停止位: 1位 校验位: 无

9.2 RS485 连接

仪器标配 RS485 接口并同时支持 ModbusRTU 协议。

RS485 是一种支持多机通讯的通讯接口,可以通过一台主机与多台从机并接在一起。详细的 RS485 规范,不作为本用户手册的说明重点,请参考https://en.wikipedia.org/wiki/RS-485

仪器的 RS485 接口与 RS232 接口共用同一个 DB9 端子:

引脚	功能
8	A
9	В

9.3 握手协议

由于仪器使用了 RS-232 标准的最小子集,不使用硬件握手信号,因此为了减小通讯中可能的数据丢失或数据错误的现象,仪器可启用软件握手,高级语言软件工程师应严格按以下握手协议,进行计算机通讯软件的编制:

- 仪器命令解析器只接收 ASCII 格式,命令响应也返回 ASCII 码。
- 主机发送的命令串必须以 NL('\n')为结束符, 仪器命令解析器在收到结束符后才开始执行命令串。
- 仪器可设置指令握手: 仪器在每接收到一个字符后,立即将该字符回送给主机,主机只有接收到这个回送字符后才能继续发送下一个字符。

如果主机无法接收到仪器返回的数据,您可以使用以下方法来试图解决:

- 1. 软件握手被关闭,请参考仪器〈系统设置〉页将其开启。
- 2. 串行口连接故障,请查看电缆连接。
- 3. 计算机端高级语言程序通信格式错误。请试着检查串行口端口号、通信格式是否正确以及波特率是否和仪器设置的相同。
- 4. 如果仪器正在解析上次命令, 主机也无法接收到仪器的响应, 请稍候再试。
- 〈问题仍无法解决,请立即咨询安柏仪器技术工程师〉

9.4 SCPI 语言

SCPI-Standard Commands for Programmable Instruments (可程控仪器标准命令)是安柏仪器采用的一种用于测试仪器的通用命令集。SCPI 亦称为 TMSL-Test and Measurement System Language (测试系统语言)由 Agilent Technologies 根据 IEEE488.2 扩展开发,至今已被测试设备制造商广泛采用。

仪器内置命令解析器负责用户各种命令格式解析。由于命令解析器依据 SCPI 协议,但并不完全与 SCPI 一致,请开始工作之前仔细阅读"SCPI 命令参考"一章。

9.5 LAN

为了方便远程控制仪器,仪器为用户提供 LAN 功能。LAN 是一种局域网连接方式,可以让你的电脑和仪器通过同一个网络连接,实现远程控制功能。

进入〈系统配置〉页,使用功能键或者光标键选择【LAN】,点击切换到〈远程服务 LAN〉界面。

图 9-2 LAN

参数	说明
MAC 地址 物理地址,用于唯一识别设备	
IP 地址	逻辑地址,用于在网络中定位和通信
端口 耐压仪与网络设备之间的连接点	
网络掩码 用于划分网络地址和主机地址的分界线	
网关	连接不同网络的设备,进行数据转发

通过远程通信 LAN 功能,您可以通过 LAN 口将耐压仪连接到局域网中,实现与其他设备的远程通信和数据交换。使用方法如下:

- (1) 确保耐压仪的 LAN 口与局域网中的交换机或路由器连接正常,
- (2) 在耐压仪的<远程服务 LAN>界面中配置正确的 IP 地址、网络掩码和网关,确保与局域网内其他设备处于同一网络段,
- (3) 打开网络连接助手,设置好协议类型以及 IP 地址和端口号,点击连接后即可进行通讯。

10. SCPI 命令参考

本章您将了解到以下内容:

- 命令解析器——了解命令解析器的一些规则。
- 命令语法——命令行的书写规则
- 查询语法——查询命令的书写规则
- 查询响应——查询响应的格式
- 命令参考

本章节提供了仪器使用的所有的 SCPI 命令,通过这些 SCPI 命令,可以完全控制仪器所有功能。

10.1命令串解析

主机可以发送一串命令给仪器,仪器命令解析器在捕捉到结束符或是 20ms 时间内无输入后开始解析。

例如:

合法的命令串:

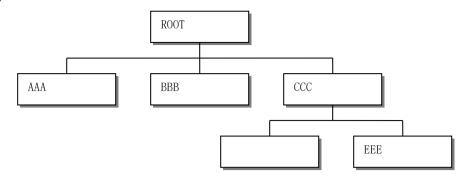
AAA:BBB CCC;DDD EEE;:FFF

仪器命令解析器负责所有命令解析和执行,在编写程序前您必须首先对其解析规则有所了解。

10.1.1 命令解析规则

- 1. 命令解析器只对 ASCII 码数据进行解析和响应。
- 2. 在收到结束符后开始命令解析。(结束符可以在〈系统配置〉页面里设置)
- 3. 如果没有收到结束符,命令解析器会在等待 20ms 未收到字符后开始解析命令。
- **4.** 如果指令握手打开,命令解析器在每接收到一个字符后,立即将该字符回送给主机,主机只有接收到这个回送字符后才能继续发送下一个字符。
- 5. 命令解析器在解析到错误后,立即终止解析,当前指令作废。
- 6. 命令解析器在解析到查询命令后,终止本次命令串解析,其后字符串被忽略。
- 7. 命令解析器对命令串的解析不区分大小写。
- 8. 命令解析器支持命令缩写形式,缩写规格参见之后章节。

10.1.2 符号约定和定义


本章使用了一些符号,这些符号并不是命令树的一部分,只是为了能更好的对命令串的理解。

标志	说明	
<··· >	尖括号中的文字表示该命令的参数,例如:	
	〈float〉代表浮点数参数	
	<integer>代表整数参数</integer>	
[]	中括号中文字表示可选命令,例如:	
	COMP[:STAT] ON = COMP ON	
{······} 大括号中的参数表示单选项,例如:		
	FUNC: RATE {SLOW, MED, FAST} 参数是其中一项	
大写字母	字母 命令的缩写形式 空格字符,表示一个空格,仅用于阅读需要。	

10.1.3 命令树结构

对 SCPI 命令采用树状结构的,可向下三级 (**注:此仪器的命令解析器可向下解析任意层**),在这里最高级称为子系统命令。只有选择了子系统命令,该其下级命令才有效,SCPI 使用冒号 (:)来分隔高级命令和低级命令。

图 10-1 命令树结构

举例说明

ROOT:CCC:DDD ppp ROOT 子系统命令 CCC 第二级 DDD 第三级 参数 ppp

10.2命令和参数

一条命令树由 **命令和[参数]** 组成,中间用 1 个空格(ASCII: 20H)分隔。

举例说明

AAA:BBB□1.234 命令 [参数]

10.2.1 命令

命令字可以是长命令格式或缩写形式,使用长格式便于工程师更好理解命令串的含义;缩写形式适合书 写。

10.2.2 参数

1. 单命令字命令,无参数。

例如: AAA:BBB

2. 参数可以是字符串形式, 其缩写规则仍遵循上节的"命令缩写规则"。

如: AAA:BBB□1.23

3. 参数可以是数值形式

<integer></integer>	整数 123, +123, -123	
<float></float>	任意形式的浮点数:	
	定点浮点数: 1.23, -1.23	
	科学计数法表示的浮点数: 1.23E+4,-1.23e-4	
	倍率表示的浮点数: 1.23k, 1.23MA, 1.23G, 1.23u	
<scifloat< th=""><th>科学计数法表示的浮点数:</th></scifloat<>	科学计数法表示的浮点数:	
>	1. 2345E+04 表示 1. 2345×10 ⁴	

表 10-1 倍率缩写

数值	倍率
1E15 (PETA)	PE
1E12 (TERA)	T
1E9 (GIGA)	G
1E6 (MEGA)	MA
1E3 (KILO)	K
1E-3 (MILLI)	M
1E-6 (MICRO)	U
1E-9 (NANO)	N
1E-12 (PICO)	P
1E-15 (PEMTO)	F
1E-18 (ATTO)	A

i

由于 SCPI 不区分大小写,因此倍率单位的写法与标准名称不同,例如:

"1M"表示为1毫,而不是1兆

"1MA"表示为1兆

10.2.3 分隔符

仪器命令解析器只接收允许的分隔符,除此之外的分隔符命令解析器将产生"Invalid separator(非法分割符)"错误。这些分隔符包括:

; 分号,用于分隔两条命令。

例如: AAA:BBB 100.0 ; CCC:DDD

: 冒号,用于分隔命令树,或命令树重启动。

例如: AAA : BBB : CCC 123.4; : DDD : EEE 567.8

? 问号,用于查询。

例如: AAA ?

□ 空格,用于分隔参数。

10.2.4 错误码

对应的错误码如下:

1.1 1 H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
错误码	说明	
*E00	No error	无错误
*E01	Bad command	命令错误
*E02	Parameter error	参数错误
*E03	Missing parameter	缺少参数
*E04	buffer overrun	缓冲区溢出
*E05	Syntax error	语法错误
*E06	Invalid separator	非法分隔符
*E07	Invalid multiplier	非法倍率单位
*E08	Numeric data error	数值错误
*E09	Value too long	数字太长
*E10	Invalid command	无效指令
*E11	Unknow error	未知错误

10.3命令参考

所有命令都是按子系统命令顺序进行解释,下面列出了所有子系统

● DISPlay 显示子系统
FUNCtion 功能子系统
● SHTclear 校正子系统
● COMParator 比较器子系统
● SYSTem 系统子系统
● TRIGger 触发子系统
● FETCh? 获取结果子系统

● ERRor 错误信息子系统

公共命令:

● PrtScn 截图

10.4DISPlay 显示子系统

DISPlay 子系统可以用来切换不同的显示页面或在页面提示栏上显示一串文本。

图 10-2 DISPlay 子系统树

DISPlay : PAGE {MEAS, SETUP (MSET), COMParator, SYSTEM, SYSTEM, SYSTEMINFO (SINF), UDISK (US

	B), LAN}
:LINE	<string></string>

10.4.1 DISPlay:PAGE

DISP: PAGE 用来切换到指定页面。

	DISP:PAGE 用术切换到相	足
命令语法	DISPlay:PAGE〈页面名称》	\rangle
参数	〈页面名称〉包括:	
	MEAS	测量显示页
	SETUP(MSET)	设置页
	COMParator	比较器页
	SYSTem	系统配置页
	SYSTEMINFO(SINF)	系统信息页
	UDISK(USB)	U盘存储页
	LAN	局域网配置页
例如	发送> disp:page setup	//切换到设置页面
查询语法	DISP:PAGE?	
查询响应	〈页面名称〉缩写	
	meas 测量	显示页
	mset	设置页
	comp	比较器页
	syst	系统配置页
	sinf	系统信息页
	cat	文件管理页
	usb	U盘存储页
例如	发送> disp:page?	
	返回> meas	

10.4.2 DISP:LINE

DISP:LINE 用来在页面底部的提示栏显示一串文本。文本最多可以显示 30 个字符。

DISP:LINE? 用来获取当前提示栏的显示的文本。

命令语法	DISPlay:LINE <string></string>	
参数	〈string〉最多 30 个字符	
例如	发送> DISP:LINE "This is a Comment."	
查询语法	DISPlay:LINE?	
例如	发送〉DISP:LINE?	
	返回>NULL //NULL,代表空白行	

10.5FUNCtion 子系统

注意:

FUNCtion 子系统设置的参数不会自动存储到文件中,设置好参数后,需要调用 FILE 子系统进行保存或是公共命令 SAV 来存储到机内文件中。

图 10-3 FUNCtion 子系统树

FUNCtion	:RANGe	{量程号}	量程号设置
		:MODE {HOLD, NOMinal}	量程模式
	: SPEED (RATE)	{SLOW, MED, FAST }	速度设置
	: CONTCHECK (CC)	{ON, OFF, 0, 1}	接触检查设置
	:CHDElay	{10ms~1000ms}	通道延时
	: SCAN	{SCAN, SING}	扫描方式
	: REFMODE	{SERIAL, PARALLEL}	刷新方式
	: AUTOPAGE	{ON, OFF, 0, 1}	自动翻页
	:CHENable	$\{ \{1^{1}, 0, 0, 0, 0, 0, 1\} \}$	模块使能
	:CHENableONLY	{1~10}	仅使能单模块
	:CHENableALL	{ON}	使能全部模块

使用 FUNCtion 子系统设置的参数, 仪器将不会保存在系统中, 下次开机需要重新设置。

10.5.1 FUNCtion: RANGe 量程

FUNC: RANG 用来设置量程方式和量程号

TOTO THE PARTY OF THE TOTO TH		
命令语法 FUNCtion: RANGe {(ch), <integer(0~7)>}</integer(0~7)>		
参数	其中,〈量程号〉	
	$0^{\sim}7$	
	最大量程(根据电压不同,最大量程也不同)	
例如	发送> FUNC: RANG 1,3 //通道 1 切换到 3 量程	
查询语法	FUNC: RANG?	
查询响应	量程号 0~7	
例如	发送> FUNC: RANGE?	
	返回> 3	

10.5.2 FUNCtion: RANGe: MODE 量程方式

FUNC: RANG: MODE 用来切换量程方式

		····, ···· — · · · · ·
命令语法 FUNCtion:RANGe:MODE {HOLD, NOMinal(NOM)}		FUNCtion:RANGe:MODE {HOLD, NOMinal(NOM)}
	例如	发送> FUNC: RANG: MODE NOM (NL) //切换到标称量程方式
	查询语法	FUNC: RANG: MODE?
	查询响应	{HOLD, NOM}

10.5.3 FUNCtion: RATE 测量速度

FUNC: RATE 或 FUNC: SPEED 用来设置测量速度。

命令语法	FUNCtion:RATE {SLOW, MED, FAST}			
	FUNCtion:SPEED {SLOW, MED, FAST}			
例如	发送> FUNC: RATE MED //设置为中速测试			
查询语法	FUNCtion: RATE?			
	FUNCtion:SPEED?			
查询响应	{SLOW, MED, FAST}			

10.5.4 FUNCtion: CONTCHECK (CC) 接触检查

FUNC: CONTCHECK 或 FUNC: CC 用来设置接触检查开关。

命令语法	FUNCtion:CONTCHECK {OFF, ON, 0, 1}		
	FUNCtion:CC {OFF, ON, 0, 1}		
例如	发送> FUNC:CC ON		
查询语法	FUNCtion: CONTCHECK?		
	FUNCtion:CC?		
查询响应	{on, off} //返回为小写字母 on/off		

10.5.5 FUNCtion: CHDElay 通道延时

FUNC: CHDElay 用来设置通道延时。

命令语法	FUNCtion: CHDElay {10~2000}
例如	发送> FUNC: CHDE 100 //设置通道延时为 100ms
查询语法	FUNCtion: CHDE?
查询响应	100

10.5.6 FUNCtion:SCAN 扫描方式

FUNC: SCAN 用来设置扫描方式。

命令语法	FUNCtion: SCAN {SCAN, SING}			
例如	发送> FUNC: SCAN SCAN //设置为扫描方式			
	发送> FUNC: SCAN SING, 2 //设置为 2 路单路扫描			
查询语法	FUNCtion: SCAN?			
查询响应	{SCAN, SING} //返回为大写字母			

10.5.7 FUNCtion: REFMODE 刷新方式

FUNC: REFMODE 用来设置刷新方式。

命令语法	FUNCtion: REFMODE {SERIAL, PARALLEL}			
例如	发送> FUNC: REFMODE SERIAL //设置刷新方式为串行			
查询语法	FUNCtion: SRES?			
查询响应 { SERIAL , PARALLEL } //返回为大写字母				

10.5.8 FUNCtion: AUTOPAGE 自动翻页

FUNC: AUTOPAGE 用来自动翻页是否开启。

命令语法	FUNCtion: AUTOPAGE {ON, OFF, 1, 0}		
例如	发送> FUNC: AUTOPAGE ON //打开自动翻页		
查询语法	FUNCtion: AUTOPAGE?		
查询响应	{ON, OFF} //返回为大写字母		

10.5.9 FUNCtion: chenable (chen)

FUNC: RANG 用来使能或失能全路测量的通道号

101011440 /11水区加入工作公元 5			
命令语法	FUNCtion: chenable (chen) {(ch), <0N, FF, 0, 1>}		
参数	参数 1: 通道号		
	参数 2: ON/OFF		
例如	发送> FUNC: chenable 1,0N //使能通道 1		
命令语法	FUNCtion: chenableOnly(chenOnly) {(ch)}		
参数	参数:通道号		
例如 发送> FUNC: chenOnly 1 //仅使能通道 1			
命令语法 FUNCtion: chenableAll(chenAll) { <on, 1="">}</on,>			
参数 参数: 仅 on 或 1			
例如	发送> FUNC: chenAll ON //打开全部通道		
查询语法	FUNC:chen? 1		
查询响应	ON, OFF		
例如	发送> FUNC: CHEN?		
	返回> ON		

10.6COMParator 子系统

COMP 子系统用来设置比较器参数。

图 10-4 COMParator 子系统树

COMParator	[:STATe]	{OFF, ON}		比较器状态
	:BEEP	{OFF, OK, FAIL}		讯响设置
	:LOWer	:CH1~CH10	{ {1~16, <float>} }</float>	下限
	:UPper	:CH1~CH10	{ {1~16, <float>} }</float>	上限
	:LIMIT(LMT)	<float>, <float></float></float>		下限,上限

10.6.1 COMParator[:STATe] 比较器状态

COMP[:STATe] 用来关闭比较器或设置档位数。

	命令语法	COMParator[:STATe] {OFF, ON, 0, 1}			
Ī	例如	发送>COMP:STAT ON //打开比较器			
		发送>COMP OFF //关闭比较器			
Ī	查询语法	COMP[:STAT]?			
	查询响应	{off, on}			

10.6.2 COMParator:BEEP 比较器讯响

COMP: BEEP 用来启用讯响。

	74474474				
	COMParator:BEEP {OFF, OK, NG}				
	例如	发送> COMP:BEEP OK //合格讯响			
	查询语法	COMP:BEEP?			
	查询响应	{OFF, OK, NG}			

10.6.3 COMParator:LOWer 比较器下限

COMP:LOWer 设置比较器下限,数据可以是任意形式的浮点数。

命令语法	COMParator:LOWer <float></float>				
例如	发送> COMP:LOW:CH1 1 //设定模块1所有通道的下限值为1Ω				
	送> COMP:LOW CH2 1,1000 //设定模块 2 的通道 1 的下限值为 1k Ω				
	说送> COMP:LOW CH3 2,1000000//设定模块 3 的通道 2 的下限值为 1MΩ				
查询语法	COMP:LOW:{CH1?~CH10?}				
查询响应	(Scifloat 科学计数法)				
例如	发送〉COMP:LOW:CH1?				
	返回〉模块1的所有通道的下限值				

10.6.4 COMParator:Upper 比较器上限

COMP: UPper 设置比较器上限,数据可以是任意形式的浮点数。

比较器极限最大值: 2M

上限值设置为0,代表无穷大,上限将不参与比较运算。

命令语法	COMParator:UPper { <float 上限="">, OFF}</float>					
例如	发送> COMP:UP:CH1 1 //设定模块 1 所有通道的上限值为 1 Ω					
	定送> COMP:UP CH2 1,1000 //设定模块 2 的通道 1 的上限值为 1k Ω					
	划送> COMP: UP CH3 2, 1000000 //设定模块 3 的通道 2 的上限值为 1MΩ					
查询语法	COMP:UP: {CH1?~CH10?}					
查询响应	〈Scifloat 科学计数法〉					
例如	发送〉COMP:UP: CH1?					
	返回〉模块1的所有通道的下限值 //0 表示上限关闭					

10.7SYSTem 子系统

SYSTem 子系统用来设置与系统相关的参数。这些指令多数与仪器〈系统配置〉页有关。

注意:

SYSTem 子系统设置的参数将自动存储到系统存储器中,不需要额外 SAV 指令。

图 10-5 SYSTem 子系统树

SYSTem	:LANGuage	{ENGLISH, CHINESE, EN, CN}	系统语言设置
	:THEMe	{CLASSIC, MORDEN}	主题风格设置
	:TIME	<year>, <month>, <day>, <hour>, <minute>, <second></second></minute></hour></day></month></year>	机内时间设置
	:KEYLock(key1)	$\{ON(1), OFF(0)\}$	键锁设置
	:KEYBeep	$\{ON(1), OFF(0)\}$	按键音设置
	: SHAKEHAND (SHAK)	$\{ON(1), OFF(0)\}$	SCPI 握手设置
	:RESult	{FETCh, AUTO}	结果发送设置
	:SAVe		系统参数保存

10.7.1 SYSTem: LANGuage 系统语言

仪器语言设置

命令语法	SYSTem:LANGuage {ENGLISH, CHINESE, EN, CN}	
例如	发送〉SYST:LANG EN //设置为英文显示	
查询语法	SYST:LANG?	

查询响应	{ENGLISH, CHINESE}	

10.7.2 SYSTem: SYTLe 主题风格设置

仪器内置 2 种主题风格, CLASSIC 和 MORDEN。

命令语法	SYSTem:STYLe { CLASSIC, MORDEN}		
例如	发送> SYST:STYLe MORDEN//仪器主题风格将更改为现代风格		
查询语法	SYST:STYL?		
查询响应	{CLASSIC, MORDEN }		

10.7.3 SYSTem: TIME 系统时间设置

命令语法	SYSTem:TIME <year>, <month>, <day>, <hour>, <minute>, <second></second></minute></hour></day></month></year>		
例如	发送> SYST:TIME 2020, 2, 1, 11, 18, 31 //2020-2-1 11:18:31		
查询语法	SYSTem:TIME?		
查询响应	<year>-<month>-<day> <hour>:<minute>:<second></second></minute></hour></day></month></year>		
例如	发送> SYST:TIME?		
	接收> 2016-12-30 11:18:31		

10.7.4 SYSTem: KEYLock 或 SYSTem: KLOCk 键盘锁设置

命令语法	SYSTem: KEYLock {ON, OFF, 0, 1}			
	SYSTem: KLOCk {ON, OFF, 0, 1}			
例如	发送> SYST:KEYL OFF //键盘解锁			
查询语法	SYSTem: KEYLock?			
	SYSTem: KLOCk?			
查询响应	{on, off}			

10.7.5 SYSTem: KEYBeep 按键音设置

按键音打开/关闭设置

命令语法	SYSTem: KEYBeep (KEYB) {OFF, ON, O, 1}
参数	{OFF, ON, 0, 1}
例如	发送> SYST: KEYB OFF
查询语法	SYSTem: KEYB?
查询响应	{on, off}

10.7.6 SYSTem: SHAKhand 通讯握手指令(数据头返回)

通讯握手开启后, 仪器会将接收到的指令原样返回给主机, 之后再返回数据。

命令语法	SYSTem:SHAKhand {ON, OFF, 0, 1}		
例如	发送> SYST:SHAK ON		
查询语法	SYSTem:SHAKhand?		
查询响应	{on, off}		

10.7.7 SYSTem: RESult 测试结果发送

SYSTem: RESult 可以设置数据发送方式: 自动发送或是通过 FETCH 指令。

如果将结果发送设置为 AUTO, 测量数据需要根据【测量定时】开启与否进行返回: □ 当【测量定时】设置为<u>关闭</u>时, 仪器每测量一次数据将返回一次; □ 当【测量定时】设置了时间后,仅在测量结束时返回一次。

命令语法	SYSTem: RESult {FETCH, AUTO}		
参数	{FETCH, AUTO}		
	FETCH: 数据需要通过指令 fetch?才能返回到主机,仪器被动发送。		
	AUTO: 数据在每次测试完成后,自动发送测试结果给主机,仪器主动发送数据,无需上位机参与。		
例如	发送〉SYST:RES AUTO //设置为自动发送		
查询语法	SYST:RES?		
查询响应	{FETCH, AUTO}		

10.7.8 SYSTem: SAVe

SYSTem: SAVe 可以保存系统和设置页面的参数。

	21210m101110 1910/11 3170 11 SEX ENTER 12 3 3 5
命令语法	SYSTem:SAVe
例如	发送〉SYST:SAV

10.8TRIGger 子系统

图 10-6 TRIGger 子系统树

TRIGger	[:IMMediate]		触发一次
	:SOURce	{INT, MAN, BUS}	触发源选择
TRG			触发一次并在测量完成后返回数
			据

TRIGger 用来设置触发源和产生一次触发。

10.8.1 TRIGger[:IMMediate]

TRIG[:IMM] 在触发源设置为 BUS 时,产生一次触发。

i	当<系统配置>页中的【结果发送】设置为自动,触发一次会返回测量数据。 当<系统配置>页中的【结果发送】设置为 FETCH,将不会返回测量数据。 如果必须返回数据,使用 TRG 指令。
	返回的结果由仪器当前使能的通道和扫描模式(单路、扫描)决定

命令语法	TRIGger[IMMediate]	
例如	发送> TRIG	//仪器测试一次后停止

10.8.2 TRIGger: SOURce

TRIG:SOUR 用来设置触发源。

THE OF THE PROPERTY OF THE PRO	
命令语法	TRIGger:SOURce {INT, MAN, BUS}
例如	发送> TRIG:SOUR BUS //设置为总线触发模式。
查询语法	TRIG:SOUR?
查询响应	{INT, MAN, BUS>

10.8.3 TRG

TRG 在触发源设置为 BUS 时,产生一次触发,并返回触发测试的数据。

i

- □ TRG 指令没触发一次都会返回测量数据,与【结果发送】选项无关。
- □ 如果当前状态为放电状态,将自动进入充电/测试状态并测量一次并返回测量结果。
- □ 为了保证每次返回值数据长度相等,末尾会增加空格补全。
- □ 如果充电时间或是测量时间设置过长,需要调整上位机通讯避免超时错误。
- □ 仅在<测量显示>页有效。
- □ 远程触发必须设置为【远程】。

返回数据格式:

01-01,1.800000e+09,0FF

01-02,1.800000e+09,NG HI

02-01,1.800000e+09,NG HI

02-02,1.600000e+09,0K

01-01,1.800		
01-01	1.000006e+09	OK□□□
模块号-通道号	绝缘由阳值	比较器

命令语法	TRG
例如	发送> TRG //仪器测试一次,并返回测试数据
	返回> 01-01, 1. 000007e+09, 0FF□□

10.9FETCh (READing) 子系统

FETCh (READing) 子系统用来获取测试数据。

图 10-7 FETCh? 子系统树

	• •	
FETCh	FETCh? 〈模块: 1-10〉, 〈通道: 1-16〉	获取测量数据
READing	READing? 〈模块: 1-10〉, 〈通道: 1-16〉	获取测量数据

□ 两个指令功能完全相同

□ 此指令有两个可选参数,参数1:模块号,参数2:通道号

□ 此指令完全由用户自己选择想要获取的测量数据,与【自动发送】根据使能的模块和扫描方式发 送测量数据不同

10.9.1 READing?/Fetch? 获取测量数据

在<测量显示>页,发送 READing?将返回当前测量数据。

_	要使用此指令,必须将〈系统配置〉页面下的【结果发送】字段设置为【FETCH】
ī	为了保证每次返回值数据长度相等,末尾会增加空格补全
_	此指令仅在<测量显示>页面有效

查询语法	READing?/Fetch? 1,1 //表示仅获取模块 1 的通道 1 的测量结果
查询响应	$\{01-01, 1.000000e+09, 0K \square \square \square\}$
	结果返回:
	参数 1: 模块号-通道号
	参数 2: 电阻测量结果(其中,1.000000e+20 表示超量程)
	参数 3:接触检查结果或比较器结果(其中接触检查结果有:CC_HL,CC_H□,CC_L□;比较器结果有
	OK, LO, HI, OFF)
查询语法	READing?/Fetch? 1 //表示获取模块 1 的所有通道的测量结果
查询响应	$\{01-01, 1.000000 e+09, 0K \square\square, 01-02, 1.000000 e+09, 0K \square\square, 01-03, 1.000000 e+09, 0K \square\square, 01-02, 1.000000 e+09, 0K \square\square, 01-03, 1.000000 e+09, 0K \square\square, 01-02, 1.000000 e+09, 0K \square\square, 01-03, 1.0000000 e+09, 0K \square\square, 01-03, 1.00000000 e+09, 0K \square\square, 01-03, 1.0000000 e+09, 0K \square\square, 01-03, 1.00000000 e+09, 0K \square\square, 01-03, 1.000000000000000000000000000000000000$
	$04, 1.\ 0000000 \\ e + 09, 0 \\ \square \ \square, 01 - 05, 1.\ 0000000 \\ e + 06, 0 \\ \square \ \square, 01 - 06, 1.\ 0000000 \\ e + 09, 0 \\ \square \ \square, 01 - 06, 1.0000000 \\ e + 09, 0 \\ \square \ \square, 01 - 06, 1.0000000 \\ e + 09, 0 \\ \square \ \square \ \square, 01 - 01, 01 - 01, 01 - 01, 01, 01, 01, 01, 01, 01, 01, 01, 01,$
	$07, 1.000000 e + 09, 0 K \square \square \square, 01 - 08, 1.000000 e + 09, 0 K \square \square \square, 01 - 09, 1.000000 e + 09, 0 K \square \square \square, 01 - 09, 1.000000 e + 09, 0 K \square \square \square, 01 - 09, 1.000000 e + 09, 0 K \square \square \square, 01 - 09, 1.0000000 e + 09, 0 K \square \square \square, 01 - 09, 1.0000000 e + 09, 0 K \square \square \square, 01 - 09, 1.0000000 e + 09, 0 K \square \square \square, 01 - 09, 1.00000000 e + 09, 0 K \square \square \square, 01 - 09, 1.00000000 e + 09, 0 K \square \square \square, 01 - 09, 1.000000000000000000000000000000000000$
	$10, 1.000000 e + 09, 0 K \square \square \square, 01 - 11, 1.000000 e + 09, 0 K \square \square \square, 01 - 12, 1.000000 e + 09, 0 K \square \square \square, 01 - 12, 1.000000 e + 09, 0 K \square \square \square, 01 - 12, 1.000000 e + 09, 0 K \square \square \square, 01 - 12, 1.000000 e + 09, 0 K \square \square \square, 01 - 12, 1.000000 e + 09, 0 K \square \square \square, 01 - 12, 1.000000 e + 09, 0 K \square \square \square, 01 - 12, 1.000000 e + 09, 0 K \square \square \square, 01 - 12, 1.000000 e + 09, 0 K \square \square \square, 01 - 12, 1.0000000 e + 09, 0 K \square \square \square, 01 - 12, 1.0000000 e + 09, 0 K \square \square \square, 01 - 12, 1.0000000 e + 09, 0 K \square \square \square, 01 - 12, 1.0000000 e + 09, 0 K \square \square \square, 01 - 12, 1.0000000 e + 09, 0 K \square \square \square, 01 - 12, 1.0000000 e + 09, 0 K \square \square \square, 01 - 12, 1.0000000 e + 09, 0 K \square \square \square, 01 - 12, 1.0000000 e + 09, 0 K \square \square \square, 01 - 12, 1.0000000 e + 09, 0 K \square \square \square, 01 - 12, 1.00000000000 e + 09, 0 K \square \square \square, 01 - 12, 1.000000000000000000000000000000000000$
	$13, 1.\ 0000000 \\ e + 09, 0 \\ \square \ \square, 01 \\ - 14, 1.\ 0000000 \\ e + 09, 0 \\ \square \ \square, 01 \\ - 15, 1.\ 0000000 \\ e + 09, 0 \\ \square \ \square, 01 \\ - 15, 1.\ 0000000 \\ e + 09, 0 \\ \square \ \square, 01 \\ - 15, 1.\ 0000000 \\ e + 09, 0 \\ \square \ \square \ \square, 01 \\ - 15, 1.\ 0000000 \\ e + 09, 0 \\ \square \ \square \ \square, 01 \\ - 15, 1.\ 0000000 \\ e + 09, 0 \\ \square \ \square \ \square, 01 \\ - 15, 1.\ 0000000 \\ e + 09, 0 \\ \square \ \square \ \square, 01 \\ - 15, 1.\ 0000000 \\ e + 09, 0 \\ \square \ \square \ \square, 01 \\ - 15, 1.\ 0000000 \\ e + 09, 0 \\ \square \ \square \ \square, 01 \\ - 15, 1.\ 0000000 \\ e + 09, 0 \\ \square \ \square \ \square, 01 \\ - 15, 1.\ 0000000 \\ e + 09, 0 \\ \square \ \square \ \square, 01 \\ - 15, 1.\ 0000000 \\ e + 09, 0 \\ \square \ \square \ \square, 01 \\ - 15, 1.\ 0000000 \\ e + 09, 0 \\ \square \ \square \ \square, 01 \\ - 15, 1.\ 0000000 \\ e + 09, 0 \\ \square \ \square \ \square, 01 \\ - 15, 1.\ 0000000 \\ e + 09, 0 \\ \square \ \square \ \square, 01 \\ - 15, 1.\ 00000000 \\ e + 09, 0 \\ \square \ \square \ \square, 01 \\ - 15, 1.\ 00000000 \\ e + 09, 0 \\ \square \ \square \ \square, 01 \\ - 15, 1.\ 00000000 \\ e + 09, 0 \\ \square \ \square \ \square, 01 \\ - 15, 1.\ 000000000 \\ e + 09, 0 \\ \square \ \square \ \square, 01 \\ - 15, 1.\ 0000000000 \\ e + 09, 0 \\ \square \ \square \ \square, 01 \\ - 15, 1.\ 00000000000 \\ e + 09, 0 \\ \square \ \square \ \square, 01 \\ - 15, 1.\ 00000000000000 \\ e + 09, 0 \\ \square \ \square \ \square, 01 \\ - 15, 1.\ 00000000000000000 \\ e + 09, 0 \\ \square \ \square \ \square, 01 \\ - 15, 1.\ 00000000000000000000000000000000000$
	$16, 1.000000e+09, 0K \square \square \square$
	结果返回:
	参数 1: 模块号-通道号
	参数 2: 电阻测量结果(其中,1.000000e+20 表示超量程)
	参数 3:接触检查结果或比较器结果(其中接触检查结果有: CC_HL,CC_H□,CC_L□; 比较器结果有
	OK□□□、NG LO、NG HI、OFF□□)
查询语法	READing?/Fetch? //表示获取所有使能模块的所有通道的测量结果,下面假设仅有两个模块使能
查询响应	$\{01-01, 1.\ 0000000e+09, 0K \ \square \ \square, 01-02, 1.\ 0000000e+09, 0K \ \square \ \square, 01-03, 1.\ 0000000e+09, 0K \ \square \ \square, 01-03, 1.\ 0000000e+09, 0K \ \square \ \square, 01-01, 01$
	$04, 1.\ 0000000 \\ e + 09, 0 \\ \square \ \square, 01 - 05, 1.\ 0000000 \\ e + 06, 0 \\ \square \ \square, 01 - 06, 1.\ 0000000 \\ e + 09, 0 \\ \square \ \square, 01 - 06, 1.0000000 \\ e + 09, 0 \\ \square \ \square, 01 - 06, 1.0000000 \\ e + 09, 0 \\ \square \ \square \ \square, 01 - 06, 1.00000000 \\ e + 09, 0 \\ \square \ \square \ \square, 01 - 06, 1.00000000 \\ e + 09, 0 \\ \square \ \square \ \square \ \square$
	$07, 1.\ 0000000 \\ e + 09, 0 \\ \square \ \square, 01 - 08, 1.\ 0000000 \\ e + 09, 0 \\ \square \ \square, 01 - 09, 1.\ 0000000 \\ e + 09, 0 \\ \square \ \square, 01 - 09, 1.0000000 \\ e + 09, 0 \\ \square \ \square, 01 - 09, 1.0000000 \\ e + 09, 0 \\ \square \ \square \ \square, 01 - 09, 1.0000000 \\ e + 09, 0 \\ \square \ \square \ \square, 01 - 09, 1.0000000 \\ e + 09, 0 \\ \square \ \square \ \square, 01 - 09, 1.0000000 \\ e + 09, 0 \\ \square \ \square \ \square, 01 - 09, 1.0000000 \\ e + 09, 0 \\ \square \ \square \ \square, 01 - 09, 1.0000000 \\ e + 09, 0 \\ \square \ \square \ \square, 01 - 09, 1.0000000 \\ e + 09, 0 \\ \square \ \square \ \square, 01 - 09, 1.0000000 \\ e + 09, 0 \\ \square \ \square \ \square, 01 - 09, 1.0000000 \\ e + 09, 0 \\ \square \ \square \ \square, 01 - 09, 1.0000000 \\ e + 09, 0 \\ \square \ \square \ \square, 01 - 09, 1.0000000 \\ e + 09, 0 \\ \square \ \square \ \square, 01 - 09, 1.0000000 \\ e + 09, 0 \\ \square \ \square \ \square, 01 - 09, 1.0000000 \\ e + 09, 0 \\ \square \ \square \ \square, 01 - 09, 1.0000000 \\ e + 09, 0 \\ \square \ \square \ \square, 01 - 09, 1.0000000 \\ e + 09, 0 \\ \square \ \square \ \square, 01 - 09, 0 \\ \square \ \square \ \square, 01 - 09, 0 \\ \square \ \square \ \square, 01 - 09, 0 \\ \square \ \square \ \square, 01 - 09, 0 \\ \square \ \square \ \square, 01 - 09, 0 \\ \square \ \square \ \square, 01 - 09, 0 \\ \square \ \square \ \square, 01 - 09, 0 \\ \square \ \square \ \square, 01 - 09, 0 \\ \square \ \square \ \square, 01 - 09, 0 \\ \square \ \square \ \square, 01 - 09, 0 \\ \square \ \square \ \square, 01 - 09, 0 \\ \square \ \square \ \square, 01 - 09, 0 \\ \square \ \square \ \square, 01 - 09, 0 \\ \square \ \square \ \square, 01 - 09, 0 \\ \square \ \square \ \square, 01 - 09, 0 \\ \square \ \square \ \square \ \square, 01 - 09, 0 \\ \square \ \square \ \square \ \square$
	$10, 1.\ 0000000 \\ e + 09, 0 \\ \square \ \square, 01 \\ - 11, 1.\ 0000000 \\ e + 09, 0 \\ \square \ \square, 01 \\ - 12, 1.\ 0000000 \\ e + 09, 0 \\ \square \ \square, 01 \\ - 12, 1.\ 0000000 \\ e + 09, 0 \\ \square \ \square, 01 \\ - 12, 1.\ 0000000 \\ e + 09, 0 \\ \square \ \square \ \square, 01 \\ - 12, 1.\ 0000000 \\ e + 09, 0 \\ \square \ \square \ \square, 01 \\ - 12, 1.\ 0000000 \\ e + 09, 0 \\ \square \ \square \ \square, 01 \\ - 12, 1.\ 0000000 \\ e + 09, 0 \\ \square \ \square \ \square, 01 \\ - 12, 1.\ 0000000 \\ e + 09, 0 \\ \square \ \square \ \square, 01 \\ - 12, 1.\ 0000000 \\ e + 09, 0 \\ \square \ \square \ \square, 01 \\ - 12, 1.\ 0000000 \\ e + 09, 0 \\ \square \ \square \ \square, 01 \\ - 12, 1.\ 0000000 \\ e + 09, 0 \\ \square \ \square \ \square, 01 \\ - 12, 1.\ 0000000 \\ e + 09, 0 \\ \square \ \square \ \square, 01 \\ - 12, 1.\ 0000000 \\ e + 09, 0 \\ \square \ \square \ \square, 01 \\ - 12, 1.\ 0000000 \\ e + 09, 0 \\ \square \ \square \ \square, 01 \\ - 12, 1.\ 0000000 \\ e + 09, 0 \\ \square \ \square \ \square, 01 \\ - 12, 1.\ 00000000 \\ e + 09, 0 \\ \square \ \square \ \square, 01 \\ - 12, 0 \\ \square \ \square \ \square, 01 \\ - 12, 0 \\ \square \ \square \ \square, 01 \\ - 12, 0 \\ \square \ \square \ \square, 01 \\ - 12, 0 \\ \square \ \square \ \square, 01 \\ - 12, 0 \\ \square \ \square \ \square, 01 \\ - 12, 0 \\ \square \ \square \ \square, 01 \\ - 12, 0 \\ \square \ \square \ \square, 01 \\ - 12, 0 \\ \square \ \square \ \square, 01 \\ - 12, 0 \\ \square \ \square \ \square, 01 \\ - 12, 0 \\ \square \ \square \ \square, 01 \\ - 12, 0 \\ \square \ \square \ \square, 01 \\ - 12, 0 \\ \square \ \square, 01 \\ - 12, 0 \\ \square \ \square, 01 \\ - 12, 0 \\ \square \ \square, 01 \\ - 12, 0 \\ \square \ \square, 01 \\ - 12, 0 \\ \square \ \square, 01 \\ - 12, 01 \\ \square \ \square, 01 \\ - 12, 01 \\ \square \ \square, 01 \\ - 12, 01 \\ \square \ \square, 01 \\ - 12, 01 \\ \square \ \square, 01 \\ - 12, 01 \\ \square \ \square, 01 \\ - 12, 01 \\ \square \ \square, 01 \\ \square \ \square, 01 \\ - 12, 01 \\ \square \ \square, 01 \\ \square \ \square \ \square$
	$13, 1.\ 0000000 \\ e + 09, 0 \\ \square \ \square, 01 \\ - 14, 1.\ 0000000 \\ e + 09, 0 \\ \square \ \square, 01 \\ - 15, 1.\ 0000000 \\ e + 09, 0 \\ \square \ \square, 01 \\ -$
	$16, 1.000000e+09, 0K \square \square \square$
	$\{02-01, 1.000000 e + 09, 0 \\ \square \square, 02-02, 1.000000 e + 09, 0 \\ \square \square, 02-03, 1.0000000 e + 09, 0 \\ \square \square, 02-03, 1.0000000 e + 09, 0 \\ \square \square, 02-03, 1.0000000 e + 09, 0 \\ \square \square, 02-03, 1.000000000000 e + 09, 0 \\ \square \square, 02-03, 1.000000000000000000000000000000000000$
	$04, 1.\ 000000 e + 09, 0 K \square \square \square, 02 - 05, 1.\ 000000 e + 06, 0 K \square \square \square, 02 - 06, 1.\ 000000 e + 09, 0 K \square \square \square, 02 - 06, 1.000000 e + 09, 0 K \square \square \square, 02 - 06, 1.000000 e + 09, 0 K \square \square \square, 02 - 06, 1.000000 e + 09, 0 K \square \square \square, 02 - 06, 1.000000 e + 09, 0 K \square \square \square, 02 - 06, 1.000000 e + 09, 0 K \square \square \square, 02 - 06, 1.000000 e + 09, 0 K \square \square \square, 02 - 06, 1.000000 e + 09, 0 K \square \square \square, 02 - 06, 1.0000000 e + 09, 0 K \square \square \square, 02 - 06, 1.000000 e + 09, 0 K \square \square \square, 02 - 06, 1.000000 e + 09, 0 K \square \square \square, 02 - 06, 1.0000000 e + 09, 0 K \square \square \square, 02 - 06, 1.0000000 e + 09, 0 K \square \square \square, 02 - 06, 1.0000000 e + 09, 0 K \square \square \square, 02 - 06, 1.0000000 e + 09, 0 K \square \square \square, 02 - 06, 1.0000000 e + 09, 0 K \square \square \square, 02 - 06, 1.0000000 e + 09, 0 K \square \square \square, 02 - 06, 1.000000000000000000000000000000000000$
	$07, 1.\ 0000000 \\ e + 09, 0 \\ \square \ \square, 02 - 08, 1.\ 0000000 \\ e + 09, 0 \\ \square \ \square, 02 - 09, 1.\ 0000000 \\ e + 09, 0 \\ \square \ \square, 02 - 09, 1.$
	$10, 1.\ 0000000 \\ e+09, 0 \\ \square \ \square, 02-11, 1.\ 0000000 \\ e+09, 0 \\ \square \ \square, 02-12, 1.\ 0000000 \\ e+09, 0 \\ \square \ \square, 02-12, 1.0000000 \\ e+09, 0 \\ \square \ \square, 02-12, 1.0000000 \\ e+09, 0 \\ \square \ \square, 02-12, 1.0000000 \\ e+09, 0 \\ \square \ \square, 02-12, 1.0000000 \\ e+09, 0 \\ \square \ \square, 02-12, 1.0000000 \\ e+09, 0 \\ \square \ \square, 02-12, 1.0000000 \\ e+09, 0 \\ \square \ \square, 02-12, 1.0000000 \\ e+09, 0 \\ \square \ \square, 02-12, 1.0000000 \\ e+09, 0 \\ \square \ \square, 02-12, 1.0000000 \\ e+09, 0 \\ \square \ \square, 02-12, 1.0000000 \\ e+09, 0 \\ \square \ \square, 02-12, 1.0000000 \\ e+09, 0 \\ \square \ \square, 02-12, 1.0000000 \\ e+09, 0 \\ \square \ \square, 02-12, 1.0000000 \\ e+09, 0 \\ \square \ \square, 02-12, 1.0000000 \\ e+09, 0 \\ \square \ \square, 02-12, 1.0000000 \\ e+09, 0 \\ \square \ \square, 02-12, 1.0000000 \\ e+09, 0 \\ \square \ \square, 02-12, 1.0000000 \\ e+09, 0 \\ \square \ \square, 02-12, 1.0000000 \\ e+09, 0 \\ \square \ \square, 02-12, 1.0000000 \\ e+09, 0 \\ \square \ \square, 02-12, 02-12, 0 \\ \square \ \square, 02-12, 0 \\ \square \ \square \ \square, 02-12, 0 \\ \square \ \square, 02-12, 0 \\ \square \ \square \ \square$
	$13, 1.\ 0000000 \\ e+09, 0 \\ \square \ \square, 02-14, 1.\ 0000000 \\ e+09, 0 \\ \square \ \square, 02-15, 1.\ 0000000 \\ e+09, 0 \\ \square \ \square, 02-15, 1.00000000 \\ e+09, 0 \\ \square \ \square, 02-15, 1.00000000 \\ e+09, 0 \\ \square \ \square, 02-15, 1.000000000 \\ e+09, 0 \\ \square \ \square, 02-15, 1.00000000000 \\ e+09, 0 \\ \square \ \square, 02-15, 1.000000000000000 \\ e+09, 0 \\ \square \ \square, 02-15, 1.000000000000000000000000000000000000$
	$16, 1.000000e+09, 0K \square \square \square$

10.10 IDN? 子系统

图 10-8 IDN? 子系统树

IDN?	查询系统信息
	IDN?子系统用来返回仪器的版本号。
查询语法	IDN?
查询响应	<modely, <revision="">, <sn>, < Manufacturer></sn></modely,>
例如	发送> IDN?
	返回> AT51160, REV EO. 90, 0000000, APPLENT INSTRUMENTS LTD.

PrtScn 子系统 10.11

图 10-9 PrtScn 子系统树

•	• • • • •
PrtScn	截屏
	PrtScn 子系统用来截屏
查询语法	PrtScn
查询响应	
例如	发送> PrtScn

10.12 ERRor 子系统

错误子系统用来获取最近一次发生错误的信息

	HACA MONOMANIA CAMPINE ACCOUNT HACE ACCOUNTS
查询语法:	ERRor?
查询响应:	Error string
例如:	发送> ERR?
	返回> no error. 〈NL〉

对应的错误码如下:

错误码	说明
*E00	No error
*E01	Bad command
*E02	Parameter error
*E03	Missing parameter
*E04	buffer overrun
*E05	Syntax error
*E06	Invalid separator
*E07	Invalid multiplier
*E08	Numeric data error
*E09	Value too long
*E10	Invalid command
*E11	Unknow error

11. Modbus (RTU) 通讯协议

本章您将了解到以下内容:

- 数据格式——了解 Modbus 通讯格式。
- 功能
- 变量区域
- 功能码

11.1数据格式

我们遵循 Modbus (RTU) 通讯协议, 仪器将响应上位机的指令, 并返回标准响应帧。

您可以与我公司销售部联系,获取安柏仪器通讯测试工具,里面有 Modbus 通讯调试方法。包含了 CRC-16 计算器和浮点数转成 Modbus 浮点数格式。

11.1.1 指令帧

图 11-1 Modbus 指令帧

CRC-16 计算范围

表 11-1 指令帧说明

	至少需要 3.5 字符时间的静噪间隔
从站地址	1字节
	Modbus 可以支持 00~0x63 个从站
	统一广播时指定为 00
	在未选配 RS485 选件的仪器里,默认的从站地址为 0x01
功能码	1字节
	0x03: 读出多个寄存器
	0x04: =03H, 不使用
	0x06: 写入单个寄存器,可以用 10H 替代
	0x08: 回波测试(仅用于调试时使用)
	0x10: 写入多个寄存器
数据	指定寄存器地址、数量和内容
CRC-16	2字节,低位在前
	Cyclic Redundancy Check
	将从站地址到数据末尾的所有数据进行计算,得到 CRC16 校验码
_	至少需要 3.5 字符时间的静噪间隔

11.1.2 CRC-16 计算方法

- 1. 将 CRC-16 寄存器的初始值设为 0xFFFF。
- 2. 对 CRC-16 寄存器和信息的第 1 个字节数据进行 XOR 运算,并将计算结果返回 CRC 寄存器。
- 3. 用 0 填入 MSB,同时使 CRC 寄存器右移 1 位。
- 4. 从 LSB 移动的位如果为 "0",则重复执行步骤(3)(处理下 1 个移位)。从 LSB 移动的位如果为 "1",则对 CRC 寄存器和 0xA001 进行 XOR 运算,并将结果返回 CRC 寄存器。

- 5. 重复执行步骤(3) 和(4),直到移动8位。
- 6. 如果信息处理尚未结束,则对 CRC 寄存器和信息的下 1 个字节进行 XOR 运算,并返回 CRC 寄存器,从第(3) 步起重复执行。
- 7. 将计算的结果(CRC 寄存器的值) 从低位字节附加到信息上。

```
以下是一段 VB 语言的 CRC 计算函数:
```

```
FUNCTION CRC16(DATA() AS BYTE) AS BYTE()
IM CRC16Lo As BYTE, CRC16HI AS BYTE 'CRC 寄存器
IM CL AS BYTE, CH AS BYTE '多项式码&HA001
IM SAVEHI AS BYTE, SAVELO AS BYTE
IM I AS INTEGER
IM FLAG AS INTEGER
RC16Lo = &HFF
RC16HI = &HFF
L = &H1
H = &HA0
OR I = 0 TO UBOUND (DATA)
      CRC16Lo = CRC16Lo Xor DATA(I) '每一个数据与 CRC 寄存器进行异或
      FOR FLAG = 0 To 7
         SAVEHI = CRC16HI
         SAVELO = CRC16Lo
                                  '高位右移一位
         CRC16HI = CRC16HI \ 2
                                '低位右移一位
         CRC16Lo = CRC16Lo \ 2
         IF ((SAVEHI AND &H1) = &H1) THEN '如果高位字节最后一位为1
            CRC16Lo = CRC16Lo Or &H80 '则低位字节右移后前面补 1
                         '否则自动补 0
         IF ((SAVELO AND &H1) = &H1) THEN '如果 LSB 为 1,则与多项式码进行异或
            CRC16HI = CRC16HI XOR CH
            CRC16Lo = CRC16Lo Xor CL
         END IF
      NEXT FLAG
EXT I
IM RETURNDATA(1) AS BYTE
                          'CRC 高位
ETURNDATA(0) = CRC16HI
                          'CRC 低位
ETURNDATA(1) = CRC16L0
RC16 = RETURNDATA
END FUNCTION
```


我公司的"安柏仪器通讯测试工具"",里面有 Modbus 通讯调试方法。包含了 CRC-16 计算器。

计算出 CRC-16 数据需要附加到指令帧末尾,例如: 1234H:

图 11-2 Modbus 附加 CRC-16 值

11.1.3 响应帧

除非是 00H 从站地址广播的指令,其它从站地址仪器都会返回响应帧。

图 11-3 正常响应帧

图 11-4 异常响应帧

CRC-16 计算范围

表 11-2 异常响应帧说明

从站地址	1字节
	从站地址原样返回
功能码	1字节
	指令帧的功能码逻辑或 (OR) 上 BIT7 (Ox80), 例如: Ox03 OR Ox80 = Ox83
错误码	异常代码:
	0x01 功能码错误(功能码不支持)
	0x02 寄存器错误(寄存器不存在)
	0x03 数据错误
	0x04 执行错误
CRC-16	2 字节,低位在前
	Cyclic Redundancy Check
	将从站地址到数据末尾的所有数据进行计算,得到 CRC16 校验码

11.1.4 无响应

以下情况,仪器将不进行任何处理,也不响应,导致通讯超时。

- 1. 从站地址错误
- 2. 传输错误
- 3. CRC-16 错误
- 4. 位数错误,例如:功能码 0x03 总位数必须为 8,而接受到的位数小于 8或大于 8个字节。
- 5. 从站地址为 0x00 时,代表广播地址,仪器不响应。

11.1.5 错误码

表 11-3 错误码说明

错误码	名称	说明	优先级
0x01	功能码错误	功能码不存在	1
0x02	寄存器错误	寄存器不存在	2
0x03	数据错误	寄存器数量或字节数量错误	3
0x04	执行错误	数据非法,写入的数据不在允许范围内	4

11.2功能码

仪器仅支持以下几个功能码, 其它功能码, 将响应错误帧。

表 11-4 功能码

功能码	名称	说明
0x03	读出多个寄存器	读出多个连续寄存器数据
0x04	与 0x03 相同	请用 0x03 代替
0x08	回波测试	接收到的数据原样返回
0x10	写入多个寄存器	写入多个连续寄存器

11.3寄存器

仪器的寄存器数量为 2 字节模式,即每次必须写入 2 个字节,例如:速度的寄存器为 0x3002,数据为 2 字节,数值必须写入 0x0001

数据:

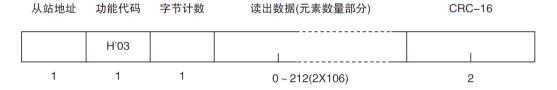
仪器支持以下几种数值:

- 1. 1个寄存器,双字节(16位)整数,例如: 0x64 → 00 64
- 2. 2 个寄存器, 四字节 (32 位) 整数, 例如: 0x12345678 → 12 34 56 78
- 3. 2个寄存器,四字节(32位)单精度浮点数,3.14 → 40 48 F5 C3

我公司的"安柏仪器通讯测试工具"",里面有 Modbus 通讯调试方法。包含了浮点数转换器。

11.4读出多个寄存器

图 11-5 读出多个寄存器 (0x03)



读出多个寄存器的功能码是 0x03.

表 11-5 读出多个寄存器

名称	名称	说明
	从站地址	没有指定 RS485 地址时,默认为 01
0x03	功能码	
	起始地址	寄存器起始地址,请参考 Modbus 指令集
	读取寄存器数量	连续读取的寄存器数量。请参考 Modbus 指令集,以确保这
	0001~006A (106)	些寄存器地址都是存在的,否则将会返回错误帧。
CRC-16	校验码	

图 11-6 读出多个寄存器 (0x03) 响应帧

名称	名称	说明
	从站地址	原样返回
0x03	功能码	无异常: 0x03
或 0x83		错误码: 0x83
	字节数	=寄存器数量 x 2
		例如: 1 个寄存器返回 02
	数据	读取的数据
CRC-16	校验码	

11.5写入多个寄存器

图 11-7 写入多个寄存器 (0x10)

从站地址	功能代码	读出开始地址	元素数量	字节计数	写入数据(元素数量部分)	CRC-16
	H'10					
1	1	2	2	1	0 ~ 208(2X104)	2

表 11-6 写入多个寄存器

名称	名称	说明
	从站地址	没有指定 RS485 地址时,默认为 01
0x10	功能码	
	起始地址	寄存器起始地址,请参考 Modbus 指令集
	写入寄存器数量	连续读取的寄存器数量。请参考 Modbus 指令集,以确保这
	0001~0068 (104)	些寄存器地址都是存在的,否则将会返回错误帧。
	字节数	=寄存器数量 x 2
CRC-16	校验码	

图 11-8 写入多个寄存器 (0x10) 响应帧

名称	名称	说明
	从站地址	原样返回
0x10	功能码	无异常: 0x10
或 0x90		错误码: 0x90
	起始地址	
	寄存器数量	
	CRC-16 校验码	

11.6回波测试

回波测试功能码 0x08, 用于调试 Modbus。

图 11-9 回波测试 (0x08)

指令帧

从站地址	功能代码	固氮	定值	测试数据	CRC-16
	H'08	H'00	H'00		
1	1	2	2	2	2字节

响应帧

从站地址	功能代码	固定值	测试数据	CRC-16	
	H'08	H'00 H'00	ı		
1	1	2	2	2字节	

名称	名称	说明
	从站地址	原样返回
0x08	功能码	
	固定值	00 00
	测试数据	任意数值: 例如 12 34
	CRC-16 校验码	

例如:

假定测试数据为 0x1234:

01 08 00 00 ED 7C(CRC-16) 指令: 12 34

08 01 00 00 12 34 响应: ED 7C(CRC-16)

12. Modbus (RTU) 指令集

本音您将了解到以下内容:

- 寄存器地址
- 具体指令的执行

我公司的"安柏仪器通讯测试工具"",里面有 Modbus 通讯调试方法。包含了浮点数转换器。

除非特别说明,以下说明中指令和响应帧的数值都是16进制数据。

12.1寄存器总览

以下列出了仪器使用的所有寄存器地址,任何不在表中的地址将返回错误码 0x02.

表 12-1 寄存器总览

长12-1 可行益心见					
寄存	器		名称	数值	说明
地址	数量	字节数			
0000	1	2	读取仪器版本号	4 字节整数	只读,数据占用2个寄存器
2000~201E	2	4	读取 1 模块测量结果	4字节浮点数 字节顺序 AABBCCDD	只读
2100~211E	2	4	读取 2 模块测量结果	4 字节浮点数	只读
2200~221E	2	4	读取3模块测量结果	4 字节浮点数	只读
2300~231E	2	4	读取4模块测量结果	4 字节浮点数	只读
2400~241E	2	4	读取 5 模块测量结果	4 字节浮点数	只读
2500~251E	2	4	读取6模块测量结果	4 字节浮点数	只读
2600~261E	2	4	读取7模块测量结果	4 字节浮点数	只读
2700 [~] 271E	2	4	读取8模块测量结果	4 字节浮点数	只读
2800~281E	2	4	读取9模块测量结果	4 字节浮点数	只读
2900~291E	2	4	读取 10 模块测量结果	4 字节浮点数	只读
3000~300F	1	2	读取1通道测试状态	测试状态:	只读
				0000:0FF	
				0001:0K	
				0002:L0	
				0003:HI	
				0004:CCHL	
				0005:CCH	
2122~2127)+#- 0 \Z\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0006:CCL	H /+
3100~310F	1	2	读取2通道测试状态	同上	只读
3200~320F	1	2	读取3通道测试状态	同上	只读
3300~330F	1	2	读取 4 通道测试状态	同上	只读
3400~340F	1	2	读取5通道测试状态	同上	只读
3500~350F	1	2	读取6通道测试状态	同上	只读
3600~360F	1	2	读取7通道测试状态	同上	只读
3700~370F	1	2	读取8通道测试状态	同上	只读

3800~380F	1	2	读取9通道测试状态	同上	月读
3900~390F		2	读取 10 通道测试状态	同上	只读
0000 0001	1		次代10 远远闪闪闪态	1.0	
4000	1	2	模块1量程模式	0001: 手动量程 0002: 标称量程	读写寄存器,2字节整数
4001	1	2	模块2量程模式	同上	读写寄存器,2字节整数
4002	1	2	模块3量程模式	同上	读写寄存器,2字节整数
4003	1	2	模块4量程模式	同上	读写寄存器,2字节整数
4004	1	2	模块5量程模式	同上	读写寄存器,2字节整数
4005	1	2	模块 6 量程模式	同上	读写寄存器,2字节整数
4006	1	2	模块7量程模式	同上	读写寄存器,2字节整数
4007	1	2	模块8量程模式	同上	读写寄存器,2字节整数
4008	1	2	模块9量程模式	同上	读写寄存器,2字节整数
4009	1	2	模块 10 量程模式	同上	读写寄存器,2字节整数
4010	1	2	模块1量程	0000~0007	读写寄存器,2字节整数
4011	1	2	模块2量程	0000~0007	读写寄存器,2字节整数
4012	1	2	模块3量程	0000~0007	读写寄存器,2字节整数
4013	1	2	模块4量程	0000~0007	读写寄存器,2字节整数
4014	1	2	模块5量程	0000~0007	读写寄存器,2字节整数
4015	1	2	模块6量程	0000~0007	读写寄存器,2字节整数
4016	1	2	模块7量程	0000~0007	读写寄存器,2字节整数
4017	1	2	模块8量程	0000~0007	读写寄存器,2字节整数
4018	1	2	模块9量程	0000~0007	读写寄存器,2字节整数
4019	1	2	模块 10 量程	0000~0007	读写寄存器,2字节整数
401A	1	2	测量速度	0000: 慢速 0001: 中速 0002: 快速	读写寄存器,2字节整数
401B	1	2	触发方式	0000: 内部触发 0001: 手动触发 0002: 远程触发 0003: 外部触发	读写寄存器,2字节整数
401C	1	2	接触检查	0000: 关闭 0001: 打开	读写寄存器,2字节整数
401D	2	4	通道延时	0000: 正常 0001: 限流	读写寄存器,2字节整数
401F	1	2	自动翻页	0000: 关闭 0001: 打开	读写寄存器,2字节整数
4020	1	2	扫描方式	0000: 扫描 0001: 单路	读写寄存器,2字节整数
4021	1	2	通道选择	0000~000F	读写寄存器,2字节整数
4022	1	2	刷新方式	0000: 串行 0001: 并行	读写寄存器,2字节整数
4100	1	2	比较器状态	0000: 关闭 0001: 打开	读写寄存器,2字节整数
4101	1	2	比较器讯响	0000: 关闭 0001: OK 0002: NG	读写寄存器,2字节整数
4 (1~A) 10	2	4	通道1比较器下限	4字节浮点数	读写寄存器
4 (1~A) 12	2	4	通道1比较器上限	4字节浮点数	读写寄存器
4 (1~A) 14	2	4	通道2比较器下限	4字节浮点数	读写寄存器
4 (1~A) 16	2	4	通道2比较器上限	4 字节浮点数	读写寄存器
4 (1~A) 18	2	4	通道3比较器下限	4字节浮点数	读写寄存器
4 (1~A) 1A	2	4	通道3比较器上限	4字节浮点数	读写寄存器
4 (1~A) 1C	2	4	通道4比较器下限	4 字节浮点数	读写寄存器
4 (1~A) 1E	2	4	通道4比较器上限	4 字节浮点数	读写寄存器
4 (1~A) 20	2	4	通道 5 比较器下限	4字节浮点数	读写寄存器
4 (1~A) 22	2	4	通道 5 比较器上限	4字节浮点数	读写寄存器
4 (1~A) 24	2	4	通道6比较器下限	4字节浮点数	读写寄存器

4 (1~A) 26	2	4	通道6比较器上限	4字节浮点数	读写寄存器
4 (1~A) 28	2	4	通道7比较器下限	4字节浮点数	读写寄存器
4 (1~A) 2A	2	4	通道7比较器上限	4字节浮点数	读写寄存器
4 (1~A) 2C	2	4	通道8比较器下限	4字节浮点数	读写寄存器
4 (1~A) 2E	2	4	通道8比较器上限	4字节浮点数	读写寄存器
$4(1^{\sim}A)30$	2	4	通道9比较器下限	4字节浮点数	读写寄存器
$4(1^{\sim}A)32$	2	4	通道9比较器上限	4字节浮点数	读写寄存器
4 (1~A) 34	2	4	通道 10 比较器下限	4字节浮点数	读写寄存器
4 (1~A) 36	2	4	通道 10 比较器上限	4字节浮点数	读写寄存器
$4(1^{\sim}A)38$	2	4	通道 11 比较器下限	4字节浮点数	读写寄存器
$4(1^{\sim}A)3A$	2	4	通道 11 比较器上限	4字节浮点数	读写寄存器
4 (1~A) 3C	2	4	通道 12 比较器下限	4字节浮点数	读写寄存器
4 (1~A) 3E	2	4	通道 12 比较器上限	4字节浮点数	读写寄存器
4 (1~A) 40	2	4	通道 13 比较器下限	4字节浮点数	读写寄存器
$4(1^{\sim}A)42$	2	4	通道 13 比较器上限	4字节浮点数	读写寄存器
4 (1~A) 44	2	4	通道 14 比较器下限	4字节浮点数	读写寄存器
4 (1~A) 46	2	4	通道 14 比较器上限	4字节浮点数	读写寄存器
4 (1~A) 48	2	4	通道 15 比较器下限	4字节浮点数	读写寄存器
4 (1~A) 4A	2	4	通道 15 比较器上限	4字节浮点数	读写寄存器
4 (1~A) 4C	2	4	通道 16 比较器下限	4字节浮点数	读写寄存器
4 (1~A) 4E	2	4	通道 16 比较器上限	4字节浮点数	读写寄存器
			_		
5000	1	2	触发一次	固定值:	只写寄存器,2字节
				0.004	

5000	1	2	触发一次 	固定值: 0001	只写寄存器,2字节
5001	1	2	键锁	0000: 解锁 0001: 上锁	只写寄存器,2字节

12.2获取测量数据

12.2.1 获取电阻测量结果【2000】【201E】

寄存器 2000~201E 用来获取仪器模块 1 的电阻值,模块 1 共 16 个通道,每个通道占两个寄存器。

 $2100^{\circ}211E$: 获取仪器模块 2 的电阻值,(单位 Ω) $2200^{\circ}221E$: 获取仪器模块 3 的电阻值,(单位 Ω) $2300^{\circ}231E$: 获取仪器模块 4 的电阻值,(单位 Ω) $2400^{\circ}241E$: 获取仪器模块 5 的电阻值,(单位 Ω) $2500^{\circ}251E$: 获取仪器模块 6 的电阻值,(单位 Ω) $2600^{\circ}261E$: 获取仪器模块 7 的电阻值,(单位 Ω) $2700^{\circ}271E$: 获取仪器模块 8 的电阻值,(单位 Ω) $2800^{\circ}281E$: 获取仪器模块 9 的电阻值,(单位 Ω) $2900^{\circ}291E$: 获取仪器模块 10 的电阻值,(单位 Ω) 指令:(获取第 5 模块 4 通道的电阻数据)

	1	2	3	4	5	6	7	8		
ĺ	01	03	24	2406		0002		2EFA		
	从站	读	ケー・ケー・			器数量	校验码			

响应

1	2	3	4	5	6	7	8	9
01	03	04	47	C3	EB	67	A6	9A
01	03	字节		单精度	CRC	-16		

● 获取测量数据:

其中B4~B6为单精度浮点数,字节顺序 AA BB CC DD

测量数据: 47 C3 EB 67 转换为浮点数: 0x47C3EB67 = 100310.804688 (十进制)

如果想要同时获取 n (1-16) 个通道的测量结果,可以将寄存器数量改为 2n。

浮点数在线转换,请参考网站 https://www.anbai.cn/Support/IEEE754.aspx

12.2.2 获取比较器结果【2200】【2209】

寄存器 2200~2209 用来获取比较器结果。返回的 2 字节整数代表了比较器结果:

0000: OFF 0001: OK 0002: LO 0003: HI 0005: CC_HL 0006: CC_H 0007: CC L

■ 读取

	1	2	3	4	5	6	7	8
I	01	03	34	00	00	01	8A	3A
I	从站	读	寄存	字器	寄存器	B数量	校	验码

响应:

1	2	3	4	5	6	7
01	03	02	00	00	В8	44
从站	读	字节	整		CR	C-16

如果想要同时获取 n (1-16) 通道的测量结果,可以将寄存器数量改为 2n。

12.3参数设置

12.3.1 量程方式【4000】【4009】

■ 写入:

1	2	3	4	5	6	7	8	9	10	11
01	10	40	00	00	01	02	00	02	66	55
站号	写	寄存	字器	寄存器	器数量	字节	数	据	CRO	C16

B8-B9: 量程方式 0001: 手动 0002: 标称

写入返回:

1	2	3	4	5	6	7	8	
01	10	40	00	00	01	14	09	
从站	写	寄存器		寄存器	8数量	CRC16		

■ 读取:

	••							
1	2	3	4	5	6	7	8	
01	03	40	4000		01	91CA		
从站	读	寄存	字器	寄存器	器数量	校验码		

响应:

14/						
1	2	3	4	5	6	7
01	03	02	00	02	39	85
从站	读	字节	整数 CRC-16			

B4-B5: 0002=标称

12.3.2 测试量程【4010】【4019】

■ 写入:

	••									
1	2	3	4	5	6	7	8	9	10	11
01	10	40	10	00	01	02	00	01	24	C4
站号	写	寄存	字器	寄存器	8数量	字节	数	据	CRO	C16

B8-B9: 量程号 0~7

写入返回:

37 TA	•						
1	2	3	4	5	6	7	8
01	10	40	10	00	01	15	CC

从站	写	寄存	字器	寄存器	B数量	CRO	C16
■ 读取	:						
1	2	3	4	5	6	7	8
01	03	40	010	(0001		900F
从站	读	寄石	字器	寄存	寄存器数量		交验码
响应:							
1	2	3	4	5	6	7	
01	03	02	00	00	В8	44	
从站	读	字节	整	数	CR	C-16	

B4-B5: 0000 量程 0。

12.3.3 速度【401A】

■ 写入

1	2	3	4	5	6	7	8	9	10	11
01	10	40	1A	00	01	02	00	01	24	6E
站号	写	寄石	字器	寄存器数量		字节	数	据	CRO	C16

B8-B9: 速度 0000: 慢速 0001: 中速 0002: 快速 写入返回:

<u> </u>	•						
1	2	3	4	5	6	7	8
01	10	40	1A	00	01	35	CE
从站	写	寄存	字器	寄存器	B数量	CRO	C16

■ 读取:

7							
1	2	3	4	5	6	7	8
01	03	40	1A	0001		B00	D
从站	读	寄存		寄存器	B数量	校验码	

响应:

1	2	3	4	5	6	7
01	03	02	00	01	79	84
从站	读	字节	整		CR	

B4-B5: 0001 中速

12.3.4 触发方式【401B】

■ 写入

1	2	3	4	5	6	7	8	9	10	11
01	10		1B	00	01	02	00	01	25	BF
站号	写	寄存	字器	寄存器	器数量	字节	数	据	CRO	C16

B8-B9: 触发方式 0000: 手动触发 0001: 总线触发 写入返回:

1	2	3	4	5	6	7	8
01	10	40	1B	00	01	79	84
从站	写	T 4-	字器	寄存器	8数量	CRO	C16

■ 读取:

	•						
1	2	3	4	5	6	7	8
01	03	40	1B	00	01	E1C	1)
从站	读	寄存	字器	寄存器	器数量	校验	码

响应:

1	2	3	4	5	6	7
01	03	02	00	01	79	84
从站	读	字节	整	数	CR	C-16

B4-B5: 0001 =总线触发

12.3.5 接触检查开关【401C】

■ 写入

1	2	3	4	5	6	7	8	9	10	11
01	10	40	1C	00	01	02	000	01	24	08
站号	写	寄存	字器	寄存器	器数量	字节	数	据	CRC16	

B8-B9:接触检查开关

0000: 关闭 0001: 打开 写入返回:

1	2	3	4	5	6	7	8
01	10	40	1C	00	01	D5	CF
从站	写	寄存器		寄存器	B数量	CRO	

■ 读取: 01 03 401C 0001 500C 从站 读 寄存器 寄存器数量 校验码

响应:

_							
	1	2	3	4	5	6	7
Γ	01	03	02	00	01	79	84
ſ	从站	读	字节	整	数	CR	

B4-B5: 0001 = 打开

12.3.6 通道延时【401D】

■ 写入

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	401D		00	02	04		42 F0	00 00		16	B2
站号	写	寄存器		寄存器	器数量	字节	浮点数		CRC16			

B8-B11: 通道延时时间,浮点数格式

42 F0 00 00 = 120ms (十进制)

写入返回:

1	2	3	4	5	6	7	8
01	10	40	1D	00	02	C4	OE
从站	写	寄存器		寄存器	B数量	CRO	C16

■ 读取:

1		2	3	4	5	6	7	8	
01		03	401D		00	02	41CD		
从站	ţ	读	寄存器		寄存器	8数量	校验码		

响应:

1	2	3	4	5	6	7	8	9
01	03	04	42	F0	00	00	EE	78
从站	读	字节		浮	CRC	-16		

B4-B7: 42 F0 00 00 = 120ms (十进制)

12.3.7 自动翻页【401F】

设置刷新界面自动翻页功能

■ 写入

1	2	3	4	5	6	7	8	9	10	11
01	10		1F	0001		02	0001		243B	
站号	写	寄存器		寄存器数量		寄存器数量 字节		数据		C16

B8-B9: 自动翻页功能

0000: 关闭 0001: 打开 写入返回:

1	2	3	4	5	6	7	8
01	10	40	1F	00	01	25	CF
从站	写	寄存器		寄存器	8数量		C16

■ 读取:

	-							
1	2	3	4	5	6	7	8	
01	03	401F		0001		A00C		
从站	读	寄存器		寄存器数量		校验码		
/>-								

响应:

1 47						
1	2	3	4	5	6	7
01	03	02	00	01	79	84
从站	读	字节	整	数	CR	C-16

B4-B5: 0001 = 打开

12.3.8 扫描方式【4020】

用户可以设定循环扫描或是定通道测量。该设置同样可以在<测量显示>页面的通道号里进行设置。

■ 写入

_ •	•									
1	2	3	4	5	6	7	8	9	10	11
01	10	40	20	00	01	02	00	00	21	34
站号	写	寄存	字器	寄存器	器数量	字节	数	据	CRO	C16

B8-B9: 扫描方式,整数格式

00 00: 代表扫描 00 01: 代表单路

写入返回:

*							
1	2	3	4	5	6	7	8
01	10	40	20	00	01	15	C3
从站	写	寄存器		寄存器	B数量	CRO	C16

■ 读取:

1	2	3	4	5	6	7	8
01	03	4020		00	0001		00
从站	读	寄存器		寄存器数量		校验码	

响应:

	1	2	3	4	5	6	7		
ĺ	01	03	02	00	00	В8	44		
	从站	读	字节	整数			CRC-16		

B4-B5: 00 00 代表刷新方式为扫描

12.3.9 通道设置【4021】

每个模块 16 通道, 在扫描方式为单路情况下可以选择。

■ 写入

1	2	3	4	5	6	7	8	9	10	11
01	10	40	21	00	01	02	000	01	20	E5
站号	写	寄存	字器	寄存器	B数量	字节	数	据	CRO	C16

B8-B9: 通道选择

写入返回:

1	2	3	4	5	6	7	8	
01	10	40	21	00	01	44	03	
从站	写	寄存器		寄存器	寄存器数量		CRC16	

■ 读取:

	-						
1	2	3	4	5	6	7	8
01	03	40	21	0001		C1C	()
从站	读	寄存	字器	寄存器数量		校验	码

响应:

1	2	3	4	5	6	7
01	03	02	00	01	79	84
从站	读	字节	整数		CRC-16	

B4-B5: 0001 = 通道 2

刷新方式【4022】 12. 3. 10

■ 写入

 - 1/	•									
1	2	3	4	5	6	7	8	9	10	11
01	10	40	22	0001		02	0001		20D6	
站号	写	寄存	字器	寄存器	器数量	字节	数	据	CRO	C16

B8-B9: 刷新方式选择

0000: 串行 0001: 并行 写入返回:

*	•						
1	2	3	4	5	6	7	8
01	10	40	22	00	01	31	CO
从站	写	寄存器		寄存器	B数量	CRO	C16

■ 读取:

_ \(\sqrt{\chi}\)	•						
1	2	3	4	5	6	7	8
01	03	401F		0001		31C0	
从站	读	寄存器		寄存器数量		校验码	

响应:

1	2	3	4	5	6	7
01	03	02	00	01	79	84
从站	读	字节	整数		CR	

B4-B5: 0001 = 并行

12.4比较器设置

比较器参数设置寄存器地址从 4100 开始。

12.4.1 比较器状态【4100】

■ 写入

	1	2	3	4	5	6	7	8	9	10	11
Ī	01	10	41	00	00	01	02	00	01	36	94
Ī	站号	写	寄存	字器	寄存器	器数量	字节	数	据	CRO	C16

B8-B9: 比较器状态

0000: 关闭 0001: 打开 写入返回:

1	2	3	4	5	6	7	8
01	10	41	00	00	01	15	F5
从站	写	寄存器		寄存器数量		CRC16	

■ 读取:

1	2	3	4	5	6	7	8
01	03	41	00	00	01	903	6
从站	读	寄存	字器	寄存器		校验	码

响应:

1	2	3	4	5	6	7
01	03	02	00	01	79	84
从站	读	字节	整数		CRC-16	

B4-B5: 0001 打开

12.4.2 比较器讯响【4101】

■ 写入

	•									
1	2	3	4	5	6	7	8	9	10	11
01	10	41	.01	00	01	02	00	01	37	45
站号	写	寄存	字器	寄存器	器数量	字节	数	据	CRO	C16

B8-B9: 讯响状态 0000: 关闭 0001: 合格讯响 0002: 不合格讯响 写入返回:

37 TA	•							
1	2	3	4	5	6	7	8	
01	10		01	00	01	44	.35	
从站	写	寄存器		寄存器	器数量	CRC16		

■ 读取:

, , , ,							
1	2	3	4	5	6	7	8
01	03	41	01	00	01	C1F	6
从站	读	寄存	字器	寄存器数量		校验	码

响应.

	14/						
	1	2	3	4	5	6	7
	01	03	02	00	01	79	84
Г	从站	读	字节	整		CR	

B4-B5: 0001 合格讯响

12.4.3 比较器极限值【4110-414E】

模块 1 比较器下限值使用 2 个寄存器【4110】 ~ 【414C】,4 字节浮点数类型。 模块1比较器上限值使用2个寄存器【4112】~【414E】,4字节浮点数类型。

i

比较器极限最大值: 2.000 M

下限和上限可以分别设置, 也可以同时设置。

a) 下限值设置

■ 写入

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	41	10	00	02	04		41 40 00 00		DB	18	
站号	写	寄存	字器	寄存器	器数量	字节		浮点	点数		CRO	C16

B8-B11: 下限值, 浮点数格式

41 40 00 00 = 12.000 (十进制 12 \Omega)

写入返回:

J/ 1/2:11	•						
1	2	3	4	5	6	7	8
01	10	41	10	00	02	54	31
从站	写	寄存	字器	寄存器	器数量	CRO	C16

■ 读取:

_ ^ ^	•						
1	2	3	4	5	6	7	8
01	03	41	10	00	02	D1F	2
从站	读	寄存	字器	寄存器	B数量	校验	码

响应:

1	2	3	4	5	6	7	8	9
01	03	04	41	40	00	00	EF	DB
从站	读	字节		浮	CRC	-16		

B4-B7: 41 40 00 00 = 12 (十进制 12Ω)

b) 上限值设置

■ 写入

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10		12	00	02	04		42 F0 00 00		5B	62	
站号	写	寄存	字器	寄存器	器数量	字节		浮点数		CRO	C16	

B8-B11: 上限值, 浮点数格式

42 F0 00 00 = 120 (十进制 120Ω)

写入返回:

77 VZ:II	•						
1	2	3	4	5	6	7	8
01	10	41	12	00	02	F5	F1
从站	写		字器	寄存器	8数量	CRO	716

■ 读取.

■ 医巩	:						
1	2	3	4	5	6	7	8
01	03	41	12	00	02	703	
从站	读	寄存	字器	寄存器	B数量	**************************************	码

响应:

1	2	3	4	5	6	7	8	9
01	03	04	42	F0	00	00	EE	78
从站	读	字节		浮	CRC	-16		

B4-B7: 42 F0 00 00 = 120 (十进制 120Ω)。

c) 同时设置上下限:

■ 写入 (10M~20G)

1	2	3	4	5	6	7	8 [~] 15		17
01	10	34	10	00	04	08 41 40 00 00 42 F0 00 00		1B	В7
站号	写	寄存	字器	寄存器数量		字节	下限值和上限值	CRO	C16

B8-B11: 41 40 00 00 下限值 12Ω, B12-B15: 42 F0 00 00 上限值 120Ω。

写入返回:

37 (~:)	•								
1	2	3	4	5	6	7	8		
01	10	41	10	00	04	D4	33		
从站	写	T 4-	寄存器		寄存器数量		CRC16		

■ 读取:

_ ^ // //	•							
1	2	3	4	5	6	7	8	
01	03	4110		0004		51F0		
从站	读	寄存器		寄存器数量		校验码		

响应:

1	2	3	4~7	8~11	12	13
01	03	08	41 40 00 00	42 F0 00 00	05	A4
从站	读	字节	下限值	上限值	CRC-16	

B8-B11: 41 40 00 00 下限值 12Ω, B12-B15: 42 F0 00 00 上限值 120Ω。

其他模块操作一样,仅需更改寄存器即可。

模块 (1^{-10}) 比较器下限值使用 2 个寄存器 $[4(1-A)10]^{-10}$ [4(1-A)4C], 4 字节浮点数类型。

模块 $(1^{\sim}10)$ 比较器上限值使用2个寄存器 $\{4(1-A)12\}^{\sim}\{4(1-A)4E\}$,4字节浮点数类型。

12.5系统功能

i

12.5.1 触发【5000】

只写寄存器。仅在〈测量显示〉页下,且触发方式为远程时有效。

■ 写入

1	2	3	4	5	6	7	8	9	10	11
01	10	50	000	00	01	02	00	01	37	95
站号	写	寄存	字器	寄存器	器数量	字节	数	据	CRO	C16

B8-B9: 0001 固定值

写入返回:

J/ •~= □	•							
1	2	3	4	5	6	7	8	
01	10	50	00	00	01	10	С9	
从站	写	寄存器		寄存器	器数量	CRC16		

12.5.2 键锁【5001】

只写寄存器。

1		2	3	4	5	6	7	8	9	10	11
01		10	50	01	0001		02	0000		F784	
站長	-	写	寄存	字器	寄存器数量		寄存器数量 字节 数据 CRG		数据		C16

B8-B9:

0000: 解锁 0001: 上锁

写入返回:

1	2	3	4	5	6	7	8	
01	10	50	01	00	01	41	09	
从站	写	寄存	字器	寄存器	8数量	CRC16		

13. 规格

本章您将了解到以下内容:

- 技术指标
- 一般规格
- 外形尺寸

13.1技术指标

下列数据在以下条件下测得:

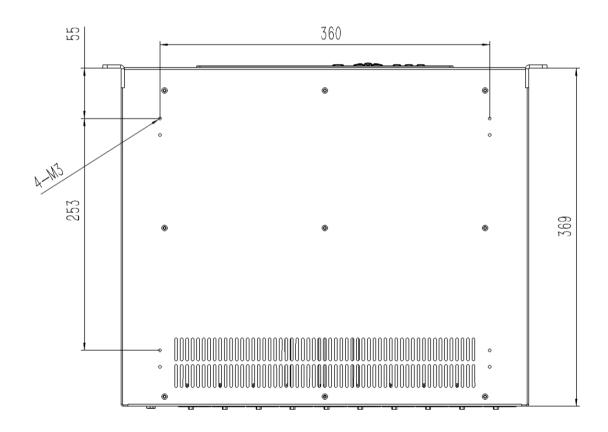
温度条件: 23℃±5℃

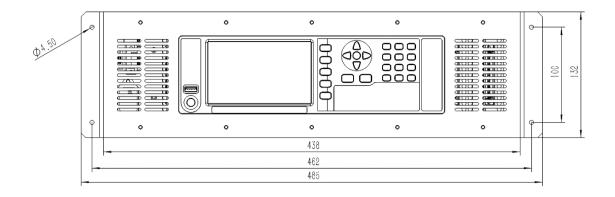
湿度条件: ≤ 65% R.H. 未结露

预热时间: > 30 分钟 校准时间: 12 个月

测试电流准确度: 0.01%

	量程	最大显示值	分辨率	快速	中速	慢速	测试电流	开路电压
0	20 m Ω	20. 000m Ω	1uΩ	0.5%±5 字	0.2% ±5 字	0.1%±3 字	1A	<4V
1	$200\text{m}\Omega$	200.00m Ω	10u Ω	0.5%±5 字	0.1%±3 字	0.05%±2 字	1A	<4V
2	2Ω	2. 0000 Ω	100u Ω	0.5%±5 字	0.1%±3 字	0.05% ±2 字	100mA	<4V
3	20Ω	20. 000 Ω	1mΩ	0.5%±5 字	0.1%±3 字	0.05%±2 字	10mA	<4V
4	200 Ω	200. 00 Ω	10 m Ω	0.5%±5 字	0.1%±3 字	0.05% ±2 字	1 mA	<7V
5	$2k \Omega$	2. 0000k Ω	100 m Ω	0.5%±5 字	0.1%±3 字	0.05%±2 字	1mA	<7V
6	20k Ω	20. 000k Ω	1 Ω	0.5%±5 字	0.1%±3 字	0.05%±2 字	100u	<7V
7	200k Ω	200. 00k Ω	10 Ω	0.5%±5 字	0.3%±5 字	0.1%±5 字	10u	<7V


13.2一般规格


F 11:							
屏幕	5 英寸 TFT-LCD ;	真彩显示					
测量范围	0.000M ~ 2.000	M $Ω$					
测量速度	仪器分三档速度	: 慢速、中速和快速。					
	通道所需最快时间						
	慢速:	3.5 秒					
	中速:	1.9秒					
	快速:	1.1 秒					
量程方式	手动和标称量程						
接触检查	方法	4端					
	显示	CC. HL: HIGH/LOW 都接触不良					
		CC. H: HIGH 端接触不良					
		CC.L: LOW 端接触不良					
比较器	设置范围	$0^{\sim}2M\Omega$					
	比较结果	OK: 合格					
		LO: 下超					
		HI: 上超					

	讯响	OK/NG/OFF
触发方式	内部、手动、	远程触发
USB 存储	定时保存或触	发保存到 USB 磁盘中
接口	RS232 接口	
	LAN 接口	
	RS485 接口	
通讯协议	SCPI/ModBus((RTU)
环境要求	指标	温度 18℃~28℃ 湿度 <65% RH 未结露
	操作	温度 10℃~40℃ 湿度 10~80% RH
	储存	温度 0℃~50℃ 湿度 10~90% RH
电源要求	电压	100V~240VAC
	保险丝	250V/4A 慢熔(仪器内部安装)
	功率	最大 20VA
	重量	≈5kg

13.3外形尺寸

(示意图)

Applent Instruments -AT51160 用户手册-

简体中文版

©2005-2020 版权所有: 常州安柏精密仪器有限公司

Applent Instruments Ltd.